Part I: Do both problems.

1. Consider the seven letter word MERRIER.
(a) How many distinct "words" can be formed by rearranging the letters?
(b) Two letters are chosen with replacement. What is the probability that they are both R's?
(c) Two letters are chosen without replacement. What is the probability that they are both the same (that is, both M's or both E's etc)?
2. Assume that among 10 coins, 1 is double-headed and the rest are fair two-sided coins. A coin is chosen at random and flipped 6 times. Let X be the number of heads which occur. Let D be the indicator function with $D=1$ if the coin is double-headed and $=0$ otherwise.
(a) Compute the expected value $E(X)$. (Hint: First compute the conditional expected value $E(X \mid D)$.)
(b) Assuming $X=6$, i.e. all of the flips are heads, what is the probability that $D=1$, i.e. that the coin is double-headed?

Part II: Do six (6) out of the following eight (8) problems.
3. Give a story proof that $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. (Hint: consider a committee of size k chosen from n people, one of whom is named Ralph).
4. Among the math professors 60% are hard graders. If you have a hard grader, then the probability of your getting an A is .10. Otherwise, your probability of getting an A is .30. Congratulations, you got an A . What is the probability that you had a hard grader?
5. Suppose that $X \sim \operatorname{Geom}(p)$. What is X counting? Describe the mass function, the PMF, of X and compute the moment generating function, the MGF, of X and the expected value of X.
6. (a) If $X \sim \operatorname{Bin}(n, p)$, then how can X be expressed using Bernoulli random variables?
(b) Assuming that $X, Y \sim \operatorname{Bin}(n, p)$ and that X and Y are independent, show that $X+Y \sim \operatorname{Bin}(2 n, p)$. Explain why if $X=Y$, then $X+Y$ cannot be a binomial random variable (Hint: Consider the values.)
7. (a) For $X \sim \operatorname{Pois}(\lambda)$ describe the PMF, of X and compute the MGF of X.
(b) Show that if $X \sim \operatorname{Pois}(\lambda), Y \sim \operatorname{Pois}(\mu)$ and X and Y are independent, then $X+Y$ is Poisson as well. Explain where independence is used.
8. Assume that $X \sim \operatorname{Exp}(\lambda)$.
(a) Compute $P(1<X<10)$ and the survival function G_{X} with $G_{X}(t)=P(X>t)$.
(b) Show that $P(X>t+s \mid X>s)=P(X>t)$.
9. Assume that $f_{X}(x)=C \cdot x^{3}$ for $0<x<1$ and $=0$ otherwise.
(a) With what value must C have so that f_{X} is a density function, a PDF? If X has this density function, what are $E(X)$ and $\operatorname{Var}(X)$?
(b) If X_{1}, \ldots, X_{n} are i.i.d. random variables, each with density function f_{X}, and $M=\max \left(X_{1}, \ldots, X_{n}\right)$, what is $P\left(M<\frac{1}{2}\right)$?
10. (a) For an event A define what it means for I_{A} to be the indicator random variable of A.
(b) For independent events A, B express $I_{A \cap B}$ in terms of I_{A} and I_{B}.
(c) For mutually exclusive events A, B compute $I_{A \cap B}$.

Part III: Do two (2) out of the following three (3) problems.
11. The number N of eggs that a chicken lays is Poisson distributed with $N \sim \operatorname{Pois}(\lambda)$. Each egg hatches with probability p and so does not hatch with probability $q=1-p$. The different eggs are independent. Let X be the number which hatch and Y be the number which do not so that $X+Y=N$.
(a) What is the PMF of the conditional distribution of X assuming $N=n$?
(b) Compute the joint PMF $f_{X Y}(i, j)=P(X=i, Y=j)$, for $i, j=$ $0,1, \ldots$ (Hint: Observe that $P(P(X=i, Y=j)=P(X=i, N=$ $i+j)$.)
(c) Explain why X and Y are independent Poisson random variables.
12. A piece of random length X is broken from a stick of length 1 so that $X \sim \operatorname{Unif}(0,1)$. The a piece of random length Y is broken from the first piece.
(a) Compute the conditional density of Y assuming $X=x$.
(b) Compute the conditional expectation $E(Y \mid X)$ and the expectation $E(Y)$.
13. Assume that the pair of random variables (X, Y) has joint PDF

$$
f_{X, Y}(x, y) d y d x=8 x y d y d x
$$

when $0<x<y<1$ and $=0$ otherwise.
(a) Compute the density functions f_{X} and f_{Y} and the conditional density function $f_{Y \mid X}$.
(b) Compute the expectations $E(X), E(Y)$ and the covariance $\operatorname{Cov}(X, Y)$.

