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Linear Transformations

Earlier we define a linear transformation TA : Rn → Rm

defined by multiplying the m × n matrix A.

In general, a linear transformation or linear map is a function
T : V → W between the vector spaces V and W . That is,
the inputs and outputs are vectors, and T satisfies linearity,
which is also called the superposition property:

T (v1+v2) = T (v1)+T (v2) and T (av) = aT (v). (6.1)

In particular, T (0) = T (00) = 0T (0) = 0, and
T (−v) = T ((−1)v) = (−1)T (v) = −T (v).
It follows that T relates linear combinations:

T (c1v1 + c2v2 +. . . ckvk) = c1T (v1) + c2T (v2) +. . . ckL(vk).
(6.2)



This property of linearity is very special. It is a standard
algebra mistake to apply it to functions like the square root
function and sin and cos etc. for which it does not hold. On
the other hand, these should be familiar properties from
calculus. The operator D associating to a differentiable
function f its derivative Df is a most important example of a
linear operator.

From a linear map we get an important examples of subspaces.



For a linear map T : V → W , the set of vectors
{v ∈ V : T (v) = 0} solution space of the homogeneous
equation, is a subspace of V called the kernel of T , Ker(T ).
If r is not 0 then the solution space of T (v) = r is not a
subspace. For example, it does not contain 0.

For a linear map T : V → W , the set of vectors {w ∈ W : for
some v ∈ V , T (v) = w} is called the image of L, denoted
Im(T ).

Check that Ker(T ) ⊂ V and Im(T ) ⊂ W are subspaces.

For the linear map TA : Rn → Rm associated with the m × n
matrix A, Ker(TA) = Null(A) and Im(TA) = Col(A).



LINEAR MAP Theorem 1: (a) If T : V → W and
S : W → U are linear maps, then the composition
S ◦ T : V → U defined by S ◦ T (v) = S(T (v)) is a linear
map.

(b) A linear map T : V → W is one-to-one if and only if
Ker(T ) = {0}.

(c) A linear map T : V → W is onto if and only if
Im(T ) = W .

(d) If a linear map T : V → W is one-to-one and onto, then
the inverse map T−1 : W → V defined by

T−1(w) = v ⇔ T (v) = w (6.3)

is a linear map.

A one-to-one, onto linear map is called a linear isomorphism.



Proof: (a)
S(T (cv1+v2)) = S(cT (v1)+T (v2)) = cS(T (v1))+S(T (v2)).

(b) T (0) = 0 and so if T is one-to-one, Ker(T ) = {0}.
Conversely, if T (v1) = T (v2), then T (v1 − v2) = 0. So if
Ker(T ) = {0}, we have v1 − v2 = 0 and so v1 = v2.

(c) This is clear from the definition of Im(T ).

(d)T−1(cw1+w2) = cv1+v2 ⇔ cw1+w2 = T (cv1+v2).
�



LINEAR MAP Theorem 2: Let T : V → W be a linear
map and D = {v1, . . . , vn} be a list of vectors in V . Define
T (D) = {T (v1), . . . ,T (vn)}

(a) If T (D) is an li list in W , then D is an li list in V .

(b) If D is an li list in V and Ker(T ) = {0}, then If T (D) is
an li list in W .

(c) If D spans V and Im(T ) = W , then T (D) spans W .

(d) If D is a basis for V and T is a linear isomorphism, then
T (D) is a basis for W .

(e) If D spans V and S : V → W is a linear map with
T (v1) = S(v2), . . . ,T (v1) = S(v2), then T = S . That is,
T (v) = S(v) for all v ∈ V .



Proof: (a) Assume c1v1 + · · ·+ cnvn = 0. We must show
c1 = · · · = cn = 0.

0 = T (0) = T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).
Because the list {T (v1), . . . ,T (vn)} is li, it follows that
c1 = · · · = cn = 0.

(b) Assume
0 = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · ·+ cnvn).
Because Ker(T ) = {0}, 0 = c1v1 + · · ·+ cnvn. Because D is
li, c1 = · · · = cn = 0.

(c) For w ∈ W , there exists v with T (v) = w (Why?). There
exist coefficients so that v = c1v1 + · · ·+ cnvn (Why?). So
w = c1T (v1) + · · ·+ cnT (vn).

(d) follows from (b) and (c).

(e) Check that {v : T (v) = S(v)} is a subspace of V because
S and T are linear. The subspace contains the spanning set D
and so equals all of V .
�



LINEAR MAP Theorem 3: For T : V → W a linear map,

dimV = dimKer(T ) + dimIm(T ). (6.4)

Proof: Every vector of Im(T ) is of the form T (v) and so we
can choose a basis {T (v1), . . . ,T (vr )} for Im(T ). Let
{vr+1, . . . , vn} be a basis for Ker(T ). We will show that
{v1, . . . , vr , vr+1, . . . vn} is a basis for V which will show that
n = dimV .

Assume 0 = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn. We must
show c1 = . . . cr = cr+1 · · · = cn = 0.

Apply T and note the vi ∈ Ker(T ) for r < i ≤ n implies
0 = c1T (v1) + · · ·+ crT (vr ). So c1 = · · · = cr = 0 (Why?)

This implies that 0 = cr+1vr+1 + . . . cnvn. So
cr+1 = · · · = cn = 0 (Why?)

Thus, {v1, . . . , vr , vr+1, . . . vn} is li.



Now let v ∈ V . We must find coefficients so that
v = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn.

There exist coefficients so that
T (v) = c1T (v1) + · · ·+ crT (vr ) (Why?)

T (v−c1v1+· · ·+crvr ) = T (v)−(c1T (v1)+· · ·+crT (vr )) = 0

and so there exist coefficients such that

v − c1v1 + · · ·+ crvr = cr+1vr+1 + . . . cnvn.

Thus, {v1, . . . , vr , vr+1, . . . vn} spans V .
�



LINEAR MAP Theorem 4: Let D = {v1, . . . , vn} be a list
of vectors in V . The map TD : Rn → V defined by

TD(x1, . . . , xn) =
n∑

i=1

x1vi = x1v1 + · · ·+ xnvn (6.5)

is a linear map.

If D is a basis, then TD is a linear isomorphism and inverse
map T−1D : V → Rn is given by T−1D (v) = [v]D , the
coordinate vector of v with respect to the basis D.

Proof: We saw above that the sum of two linear combinations
on a list is the linear combination obtained by adding the
corresponding coefficients. Similarly,

TD(cx1, . . . , cxn) = cTD(x1, . . . , xn). Thus, TD is linear.

If D is a basis then for any v ∈ V the equation
v = x1v1 + · · ·+ xnvn uniquely defines the coefficients and
the list of coefficients is the coordinate vector [v]D .
�



LINEAR ISOMORPHISM Theorem: For finite
dimensional vector spaces V and W , there is a linear
isomorphism T : V → W if and only if dimV = dimW . In
particular, if dimV = n, then there is a linear isomorphism
T : Rn → V .

Proof: If D = {v1, . . . , vn} is a basis for V , then
TD : Rn → V is a linear isomorphism and such a basis exists
exactly when dimV = n.

Thus, if dimV = dimW = n then there exist linear
isomorphisms T : V → Rn and S : W → Rn and so the
composition S−1 ◦ T : V → W is a linear isomorphism.

On the other hand, if T : V → W is a linear isomorphism and
D is a basis for V , then by LINEAR MAP Theorem 2(d) T (D)
is a basis for W . Therefore, dimV = #D = #T (D) = dimW .
�

Let us look at Exercise 7.2/ 1b, page 385.



Matrix of a Linear Transformation
Recall that for A an m × n matrix the linear map
TA : Rn → Rm is defined by TA(X ) = AX . By using bases we
can represent every linear map between finite dimensional
vector spaces in this way.

If T : V → W is a linear map and
B = {v1, ..., vn},D = {w1, ...,wm} are bases for V and W ,
respectively, then the matrix [T ]DB is the m × n matrix given
by

[T ]DB = [ [T (v1)]D ...[T (vn)]D ]. (6.6)

That is, we form the matrix by applying T to each of the
domain basis vectors from B in V . We list them in order,
thinking of them as a matrix but with vectors in W instead of
columns of numbers. We convert each vector to an actual
column of numbers by replacing each by its column of D
coordinates. Thus, we obtain the m × n matrix [T ]DB .



MAP MATRIX Theorem 1: Let T : V → W be a linear
map with B = {v1, ..., vn},D = {w1, ...,wm} bases for V
and W . Let [T ]DB be the m × n matrix associated to the
linear map by the choice of bases. If v ∈ V , then

[T (v)]D = [T ]DB [v]B . (6.7)

That is, the D coordinate vector of w = T (v) in Rm is

obtained by multiplying the B coordinate vector of v in Rn by
the m × n matrix [T ]DB .



Proof: By definition [v]B =


x1
·
·
xn

 means v = x1v1 + . . . xnvn,

and so w = T (v) = x1T (v1) + . . . xnT (vn). By LINEAR MAP
Theorem 4, the coordinate map w 7→ [w]D is linear and so

[w]D = x1[T (v1)]D + . . . xn[T (vn)]D .

This is, the linear combination of the columns of [T ]DB with
coefficients x1, . . . , xn. That is exactly

[T ]DB


x1
·
·
xn

 = [T ]DB [v]B .

�



MAP MATRIX Theorem 2: Let T : V → W and
S : W → U be linear maps with B ,D,E bases for V ,W and
U .

[S ◦ T ]EB = [S ]ED [T ]DB . (6.8)

That is, the matrix of the composed linear map S ◦ T is the

product of the matrices of S and T provided that the same
basis D is used for W as the range of T and as the domain of
S .

Proof: Let v be an arbitrary vector in V . By MAP MATRIX
Theorem 1 applied first to S ◦ T , then to S and then to T we
have

[S ◦ T ]EB [v]B = [(S ◦ T )(v)]E =

[(S(T (v))]E = [S ]ED [T (v)]D = [S ]ED [T ]DB [v]B .
(6.9)

The result follows because if A and B are m× n matrices such
that AX = BX for all X ∈ Rn, then A = B . (Hint: let X vary
over the columns of In, which list is the standard basis for Rn).
�



An important special case lets us change the coordinates from
one basis to another. We use the identity map I on the vector
space V , so that I (v) = v for all v in V , but we use different
bases on the domain and range.
Let B = {v1, ..., vn},D = {w1, ...,wn} be two different bases
on a vector space V . They have the same number n of
elements when dimV = n. The transition matrix from B to D
is given by:

[I ]DB = [ [v1]D ...[vn)]D ]. (6.10)

That is, the columns are the D coordinates of the B vectors
listed in order.



MAP MATRIX Theorem 3: Let B and D be bases for a
vector space V of dimension n.

(a) [I ]BB = In. That is, the transition matrix from a basis to
itself is the identity matrix.

(b) [I ]BD = ([I ]DB)−1. That is, the transition matrix from D
to B is the inverse matrix of the transition matrix from B
to D.

(c) For any vector v ∈ V ,

[v]D = [I ]DB [v]B . (6.11)

Proof: (a) is easy to check, e.g. v1 = 1v1 + 0v2 + · · ·+ 0vn.
Then (b) follows from MAP MATRIX Theorem 2.

Finally, (c) is a special case of MAP MATRIX Theorem 1.
�



As we have seen, many of the spaces we look at have a
standard basis S whose coordinate vectors are easy to read off.
If T : V → W is a linear map with B is a basis for V and S is
a standard basis for W , then it is easy to compute [T ]SB .

For example, if A is an m × n matrix and X ∈ Rn, then with
respect to the standard bases Sn on Rn and Sm on Rm, just as
the coordinate vector [X ]Sn is X itself, so too [TA]SmSn = A.

If T : V → W is a linear map with
B = {v1, . . . , vn},D = {w1, . . . ,wm} bases for V and W
and S is a standard basis for W , then usually [T ]SB and [I ]SD
are easy to read directly. It is then sometimes easiest to use
the following application of MAP MATRIX Theorems 2 and 3:

[T ]DB = [I ]DS [T ]SB = ([I ]SD)−1[T ]SB . (6.12)

Let us look at Exercises 9.1/1ad, page 501.



Eigenvalues, Eigenvectors

Suppose T : V → V is a linear map on an n dimensional
vector space V . Since the domain and range are the same
space, we usually choose the same basis for the domain and
range. If B and D are bases for V then from MAP MATRIX
Theorems 2 and 3 we have

[T ]DD = [I ]DB [T ]BB [I ]BD = ([I ]BD)−1[T ]BB [I ]BD . (7.1)

All of these matrices are square n × n matrices.

Again if B is a standard basis, then [T ]BB and [I ]BD are
usually easy to compute.



The question arises, if there is a standard basis, why use any
other? The answer is that for a particular problem or
particular matrix an alternative basis may be more useful.

If you have taken elementary Physics, then one of the first
class of problems you saw concerned motion on an inclined
plane. To solve these problems you resolved the vectors
associated with the weight and the friction force into
component parallel and perpendicular (or normal) to the plane.
In effect, you replaced the standard basis {i, j} by {eP , eN}
unit vectors parallel to and normal to the inclined plane.

Given a linear map T : V → V or associated matrix A we will
look for a basis of eigenvectors.



A nonzero vector v is an eigenvector for L with eigenvalue λ
when L(v) = λv. That is, L(v) is just a multiple of v. Of
course, if v = 0, then L(v) = λv for any λ, but if v 6= 0, then
the eigenvalue is uniquely determined by the eigenvector.

Proof: If L(v) = λ1v = λ2v, then (λ1 − λ2)v = 0 and since
v 6= 0 this means λ1 − λ2 = 0 and so λ1 = λ2. �

A nonzero vector v is an eigenvector with eigenvalue λ = 0 if
and only if v is in the kernel of L.

For an n × n matrix A an eigenvector is a nonzero n × 1
column vector X such that AX = λX or, equivalently,
(λI − A)X = 0. Thus, an eigenvector for the matrix A is
exactly an eigenvector for the linear map TA.



For a linear map L on V or an n × n matrix A, the eigenspace
Eλ(L) or Eλ(A) is the subspace defined by

Eλ(L) = {v ∈ V : L(v) = λv}.
Eλ(A) = Eλ(TA) = {X ∈ Rn : AX = λX} = Null(λI − A).

(7.2)

So Eλ(A) consists of the eigenvectors of A with eigenvalue λ
(if any) together with the zero vector.

In particular, E0(A) = Null(A) and E0(L) is the kernel of L.



You might think that we find the eigenvectors of the matrix A
and then for each one multiply by A to get the associated
eigenvalue. In fact, we do the reverse finding the eigenvalues
first.

For most values of λ the nullspace Null(λI − A) equals {0}
and so there are no eigenvectors with eigenvalue λ.

We know exactly when the nullspace is nontrivial. It is when
the system (λI − A)X = 0 has nontrivial solutions and so
when the rank of λI − A is less than n. This occurs exactly
when λI − A is singular, i.e. noninvertible, and so when
det(λI − A) = 0. So λ is an eigenvalue for A when x = λ is a
root of the characteristic equation cA(x) = 0 where cA(x) is
the characteristic polynomial given by

cA(x) = det(xI − A). (7.3)



CHARACTERISTIC EQUATION: For an n × n matrix A,
cA(x) is a polynomial of degree n with

cA(x) = xn − tr(A)xn−1 + · · ·+ (−1)ndet(A). (7.4)

where the trace of A, tr(A) = a11 + a22 + · · ·+ ann.

We will omit the proof.

The Fundamental Theorem of Algebra says that a polynomial
of degree n has n roots (counting multiplicity, so that
x2 − 2x + 1 = (x − 1)2 has the root 1 repeated twice because
there are two factors of (x − 1)). However, we are only
interested in real roots and there may be none of these.

Let Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, rotation in the plane through the

angle θ. det(xI − Rθ) = x2 − (2 cos θ)x + 1 with roots the
complex conjugate pair cos θ ± i sin θ. It is clear that for θ not
an integer multiple of π, the rotated vector Rθ(x , y) is not a
real multiple of (x , y) when (x , y) 6= 0.



Diagonalization

What we look for is a basis of eigenvectors. When there is a
basis of eigenvectors of T then we call T diagonalizable.

If {λ1, . . . , λn} is a list of numbers in R, then diag(λ1, . . . , λn)
denotes the diagonal matrix ∆ with ∆ii = λi and ∆ij = 0
when i 6= j . That is, the numbers λi occur on the diagonal of
∆ and the off-diagonal entries are all zero.

DIAGONALIZATION Theorem 1: Let D = {v1, . . . , vn}
be a basis for V and T : V → V be a linear map. The list D
consists of eigenvectors with λi the eigenvalue of vi for all i if
and only if

[L]DD = diag(λ1, . . . , λn).



Proof: The i th column of [L]DD is the D coordinate vector for
L(vi). This coordinate vector [L(vi)]D has a λi in the i th place
and 0’s elsewhere if and only if L(vi) = λivi . As they are
elements of a basis, no vi = 0.

Therefore, [L]DD = diag(λ1, . . . , λn) if and only if for each i ,
vi is an eigenvector with eigenvalue λi .
�

We call the n× n matrix A diagonalizable when the linear map
TA : Rn → Rn is diagonalizable.

Recall that with S the standard basis on Rn, [TA]SS = A. If D
is a basis of eigenvectors, then the equation
IDS [TA]SS ISD = [TA]DD says, with P = [I ]SD ,

P−1AP = diag(λ1, . . . , λn) (7.5)



Now we describe how to get the basis of eigenvectors when it
exists and so how to compute the diagonalizing matrix P .

DIAGONALIZATION Theorem 2: Let A be an n × n
matrix with distinct eigenvalues λ1, . . . , λk . If Di is a basis for
the eigenspace Eλi

(A), i = 1, . . . , k , then the combined list
D = D1 ∪ · · · ∪ Dk is an li list in Rn. The matrix A is
diagonalizable if and only if D is a list consisting of n vectors
in total.

Proof: We will illustrate the proof by looking at a special case.
Suppose that k = 3, D1 = {v1, v2, v3},
D2 = {v4,w5},D3 = {v6, v7}.



Given

(1) c1v1 + c2v2 + c3v3 + c4v4 + c5v5 + c6v6 + c7v7 = 0.

We must show all the ci equal 0.
Multiply by the matrix λ3I − A. Because Avi = λ1vi for
i = 1, 2, 3, Avi = λ2vi for i = 4, 5 and Avi = λ3vi for i = 6, 7,
we get

(2) c1(λ3 − λ1)v1 + c2(λ3 − λ1)v2 + c3(λ3 − λ1)v3
+c4(λ3 − λ2)v4 + c5(λ3 − λ2)v5 = 0.



Multiply by λ2I − A to get

(3) c1(λ3 − λ1)(λ2 − λ1)v1 + c2(λ3 − λ1)(λ2 − λ1)v2
+c3(λ3 − λ1)(λ2 − λ1)v3 = 0.

Because {v1, v2, v3} is an li list and (λ3 − λ1)(λ2 − λ1) 6= 0,
we have c1 = c2 = c3 = 0.

Because {v4, v5} is li, and (λ3 − λ2) 6= 0, equation (2) implies
c4 = c5 = 0.

Finally, equation (1) implies c6 = c7 = 0 because {v6, v7} is li.



Generalizing this argument we get that the list D is li.
Furthermore every eigenvector is a linear combination of one
of the Di ’s since {λ1, . . . , λk} lists all the eigenvalues. In
particular, the span of D contains all of the eigenvectors.

If D contains fewer than n vectors then its span has dimension
less than n and so is a proper subspace of Rn. This means
there is no basis of eigenvectors.

On the other hand, if the li list D contains n = dimRn vectors,
then it is a basis by the TWO OUT OF THREE Theorem.
�



DIAGONALIZATION Theorem 3: If A is an n × n matrix
with n distinct eigenvalues, then A is diagonalizable.

Proof: If vi is an eigenvector for λi , then D = {v1, . . . , vn} is
a list of eigenvectors which is li by the DIAGONALIZATION
Theorem 2.

Since it consists of n vectors, D is a basis.
�



Our procedure to diagonalize A is as follows

I Compute the real roots of the characteristic polynomial
cA(x) = det(xI − A). These are the eigenvalues of A.

I For each eigenvalue λ compute a basis of the solution
space for the homogeneous system (λI − A)X = 0.

I Put these bases together. If we have a list D of n vectors
then it is the required basis of eigenvectors, and the
transition matric P = [I ]SD , with columns the
coordinates of the vectors of D, is the transition matrix so
that P−1AP is diagonal. If D has fewer than n vectors,
then A is not diagonalizable.



Example: Let A =

−1 2 2
0 1 2
0 8 7

 so that the determinant of

xI − A is

(x+1)det(

(
x − 1 −2
−8 x − 7

)
) = (x+1)(x2−8x−9) = (x+1)2(x−9).

So the eigenvalues are −1 and 9.

For λ = −1, −I − A is row equivalent to

0 1 1
0 0 0
0 0 0

 with

solution x3 = r , x2 = −r , x1 = s. So

D−1 = {

1
0
0

 ,

 0
−1
1

}



For λ = 9, 9I − A is row equivalent to

1 0 −1/4
0 1 −1/4
0 0 0

 with

solution x3 = r , x2 = x1 = r/4. Using r = 4 we get

D9 = {

1
1
4

}.
P =

1 0 1
0 −1 1
0 1 4


This is the transition matrix such that
P−1AP = diag(−1,−1, 9).

Let us consider what happens when we use A =

−1 2 3
0 1 2
0 8 7


which has the same characteristic polynomial.



Projections

An important example is the following:

PROJECTION Theorem 1: For a linear map P on the n
dimensional vector space V , the following are equivalent.
When they hold, we call P a projection.

(i) P ◦ P = P .

(ii) For all v in the image of P , P(v) = v.

(iii) E1(P) = Im(P).

(iv) dim E0(P) + dim E1(P) = n.

(v) P is diagonalizable with each eigenvalue either 0 or 1.



Proof: (i), (ii) and (iii) are all saying the same thing.

For any linear map P on V , LINEAR MAP Theorem 3 says
dim E0(P) + dim Im(P) = n. Clearly, E1(P) ⊂ Im(P). So
dim E0(P) + dim E1(P) = n if and only if
dim E1(P) = dim Im(P) and so if and only if E1(P) = Im(P).
Thus, (iii) ⇔ (iv).

By the DIAGONALIZATION Theorem 2 (iv) is equivalent to
(v).
�

Notice that for a projection P

(I − P) ◦ (I − P) = I − 2P + P ◦ P = I − P .

Thus, I − P is a projection which we call the projection
complementary to P .



Systems of Differential Equations

Just as we can represent a system of linear equations using a
single matrix equation, we can do the same for a system of
linear differential equations:

dX

dt
= AX . (7.6)

Suppose that the coefficient matrix A is diagonalizable, so
that P−1AP = diag(λ1, . . . , λn) with P the invertible matrix
whose columns form a basis of eigenvectors for A.

We change variables, defining Y = P−1X and so X = PY .
Because P−1 is a constant matrix,

dY

dt
= P−1

dX

dt
= P−1AX = P−1APY = diag(λ1, . . . , λn)Y .

(7.7)



That is, we have the system of equations:

dy1
dt

= λ1y1

dy2
dt

= λ2y2

·
dyn
dt

= λnyn

(7.8)

The solution of dyi
dt

= λiyi is yi(0)eλi t . So the solution of the
system can be written in matrix form as

Y = diag(eλ1t , . . . , eλnt)Y (0),

X = PY = Pdiag(eλ1t , . . . , eλnt)P−1X (0).
(7.9)



If {v1, . . . , vn} is the basis of eigenvectors for A with
eigenvalues {λ1, . . . , λn}, then the columns of P are the
vectors v1, . . . , vn. That is,

P = [v1 . . . vn] and so

Pdiag(eλ1t , . . . , eλnt) = [eλ1tv1 . . . e
λntvn].

(7.10)

The general solution is X = c1e
λ1tv1 + . . . cne

λntvn with

Y (0) =


c1
.
.
cn

.



If we are given initial conditions X (0) then we solve for the
constants c1, . . . , cn using Y (0) = P−1X (0). So we solve:

P


c1
.
.
cn

 =


x1(0)
.
.

xn(0)

 (7.11)

and write X = c1e
λ1tv1 + . . . cne

λntvn.

Let us look at Exercise 3.5/ 1b, page 201.



Euclidean Spaces and Orthogonality

A Euclidean Space is a vector space V equipped with an inner
product.

A function associating a real number v ·w to every pair of
vectors v,w ∈ V is called an inner product when it satisfies
the following properties

I Symmetry: v ·w = w · v.
I Bilinearity: v · (cw1 + w2) = c(v ·w1) + v ·w2.

I Positivity: If v 6= 0, then v · v > 0.

From Bilinearity, we have v · 0 = 0 for any vector v and so,
in particular, 0 · 0 = 0.



For X ,Y ∈ Rn,

X · Y = XTY =
n∑

i=1

xiyi (8.1)

is the usual dot product which motivates our definition.

For A,B ∈ Mmn we define

A · B = trace(ATB) =
m∑
i=1

n∑
j=1

aijbij (8.2)

is an inner product.

For continuous functions f , g : [0, 1]→ R we can define the
inner product

f · g =

∫ 1

0

f (t)g(t) dt. (8.3)



In a Euclidean space V we define the length of the vector v by

||v|| =
√
v · v. (8.4)

Thus, any nonzero vector has a positive length.

We call v a unit vector when it has length 1. If v is any
nonzero vector, then (1/||v|)v is a unit vector.

We call two vectors v and w perpendicular or orthogonal when

v ·w = 0, (8.5)

in which case we write v ⊥ w.



There is some geometry which is useful in a Euclidean space.

PYTHAGOREAN Theorem: Let v,w be vectors in a
Euclidean space.

v ⊥ w =⇒ ||v −w||2 = ||v||2 + ||w||2. (8.6)

Proof: ||v −w||2 = (v −w) · (v −w). Expanding out, this
equals

v · v − 2v ·w + w ·w = ||v||2 + 0 + ||w||2.



A list {v1, . . . , vk} of nonzero vectors is an orthogonal list,
when vi · vj = 0 for i 6= j from 1 to k . It is an orthonormal list,
when, in addition, vi · vi = 1 for all i . Thus, an orthogonal
list consists of mutually perpendicular nonzero vectors and it is
orthonormal when all of the vectors are unit vectors.

ORTHOGONALITY Theorem 1: An orthogonal list
{v1, . . . , vk} of nonzero vectors is linearly independent.

Proof: Assume c1v1 + . . . ckvk = 0. Take the dot product
with vi .

From bilinearity and orthogonality we get
ci(vi · vi) = vi · 0 = 0. Because vi is nonzero, vi · vi > 0
and so ci = 0.
�



Recall that a projection P is a linear map on V such that
P ◦ P = P with I − P the complementary projection map onto
Ker(P).

For S = {w1, . . . ,wk} an orthogonal list, define PS by

PS(v) =
k∑

i=1

(v ·wi)

wi ·wi
wi . (8.7)

PROJECTION Theorem 2: PS is a projection with image
span(S) and the complementary projection I − PS onto
Ker(PS) is given by

(I − PS)(v) = v −
k∑

i=1

(v ·wi)

wi ·wi
wi . (8.8)

Any v ∈ Ker(PS) and any w ∈ span(S) are perpendicular.
That is, v ⊥ w.



Proof: It is clear from (8.7) that every PS(v) is in span(S). So
Im(PS) ⊂ span(S).

On the other hand, for any wj ∈ S , (wj ·wi) = 0 unless j = i
because the list is orthogonal. It follows that PS(wj) = wj for
all wj ∈ S and so PS(w) = w for all w ∈ span(S). That is,
Im(PS) = span(S) and by PROJECTION Theorem 1, PS is a
projection onto span(S).

It is also clear from (8.7) that if v ⊥ wi for all i , then
PS(v) = 0. So every vector perpendicular to span(S) is
contained in Ker(S).

On the other hand, if v ∈ Ker(PS), then since PS(v) = 0 and
the list S is li by ORTHOGONALITY Theorem 1, all of
coefficients of the wi ’s equal 0. That is, (v ·wi) = 0 for all i
and so every vector in Ker(PS) is perpendicular to the vectors
in span(S).
�



For any vector v ∈ V , the projection PS(v) is best
approximation of v by a vector in span(S). That is,

w ∈ span(S), and w 6= PS(v) =⇒ ||v−w|| > ||v−PS(v)||.
(8.9)

Proof: w − PS(v) ∈ span(S) and so is perpendicular to
v − PU(v).

Since v −w = (v − PS(v))− (w − PS(v)), the Pythagorean
Theorem implies

||v −w||2 = ||v − PS(v)||2 + ||w − PS(v)||2.



ORTHOGONALITY Theorem 2: For an n dimensional
Euclidean space, there exists an orthonormal basis
{u1, . . . ,un}.

Proof: Begin with an arbitrary basis {v1, . . . , vn}. The
Gram-Schmidt procedure constructs an orthogonal list
{w1, . . . ,wn} such that for k = 1, . . . n,

span({w1, . . . ,wk}) = span({v1, . . . , vk}). (8.10)

To begin with, let w1 = v1.

Now assume that for some k < n the orthogonal list
Sk = {w1, . . . ,wk} which satisfies (8.10)has been constructed.



Define

wk+1 = vk+1 −
k∑

i=1

(vk+1 ·wi)

wi ·wi
wi = (I −PSk )(vk+1. (8.11)

(To get rid of fractions, you can multiply wk+1 by any nonzero
constant.) By PROJECTION Theorem 2, wk+1 ⊥ wi for

i = 1, . . . , k . Because vk+1 is not in
span({v1, . . . , vk}) = span({w1, . . . ,wk}), it follows that
wk+1 6= 0.

Thus {w1, . . . ,wk ,wk+1} is an orthogonal list.

Since each of the elements of the list is in
span({v1, . . . , vk , vk+1}) it follows that

span({w1, . . . ,wk ,wk+1}) ⊂ span({v1, . . . , vk , vk+1}).

Each of the subspaces has dimension k + 1 and so they are
equal.



Continue the process to reach k = n.

We can then convert each wi to the unit vector
ui = (1/||wi ||)wi .

Clearly, for k = 1, . . . , n

span({u1, . . . ,uk}) = span({w1, . . . ,wk}) = span({v1, . . . , vk}).

Thus, {u1, . . . ,un} is an orthonormal basis.
�

Let us look at Exercise 8.1/ 1c, page 416.



Best Approximation of a Solution

Now consider the system AX = B with A an n ×m matrix.
The system is inconsistent when it has no solution which
means that B is not a linear combination of the columns of A,
that is, B is not in the column space Col(A).

We can ask what element of the column space is the best
approximation of B . We know the answer already from (8.9)
which implies that B1 = PCol(A)(B) is the unique element of
Col(A) which is closest to B .



B1 = PCol(A)(B) is characterized by the conditions
B1 ∈ Col(A) and B − B1 is perpendicular to every column of
A.

The first condition says that there exists a solution Z of
AZ = B1. To say that B − B1 = B − AZ is perpendicular to
every column of A is equivalent to AT (B − AZ ) = 0.
Therefore to obtain the best approximation B1 = AZ we solve
the normal equation

(ATA)Z = ATB . (8.12)



The solution Z of (8.12) always exists but is not unique when
the columns are not li. However B1 = AZ is unique.

To see this directly, suppose that (ATA)Z1 = (ATA)Z and so
(ATA)(Z − Z1) = 0. Our next result shows that this means
that A(Z − Z1) = 0 and so AZ = AZ1.

SYMMETRY Theorem 1: The m × n matrix A and the
n × n matrix ATA have the same null space and the same
rank.

Proof: If AX = 0, then ATAX = 0. If ATAX = 0, then

0 = XTATAX = (AX ) · (AX ) = ||AX ||2.

Therefore, AX = 0.

For both A and ATA the rank r equals n minus the dimension
of the null space.
�



Least Squares Approximation

For an n × 1 column vector X and a function f : R→ R we

let f (X ) be the n × 1 column vector

f (x1)
·

f (xn)

.

Now suppose we are given n data pairs (x1, y1), . . . , (xn, yn)
which we can regard as a pair X ,Y of n × 1 column vectors.
We want to choose coefficients z1, . . . , zk so that with
f (x) = z1 + z2x + . . . zkx

k−1, f (X ) is the best approximation
to Y . That is, we want to choose the coefficients so that
||Y − f (X )||2 is as small as possible.



We use the n × k matrix

A = [1 X X 2 . . .X k−1] =


1 x1 x21 · · xk−11

1 x2 x22 · · xk−12

· · · · · ·
1 xn x2n · · xk−1n


and we solve the normal equation ATAZ = ATY .

Let us look at Exercise 5.6/ 1a page 318.



Orthogonal Matrices

Theorem 8.06: For an n × n matrix U the following conditions
are equivalent. When they hold we call U an orthogonal
matrix.

(i) U is invertible and U−1 = UT .

(ii) UTU = In.

(iii) The columns of U form an orthonormal list and so provide
an orthonormal basis in Rn.

(iv) The rows of U form an orthonormal list and so provide an
orthonormal basis in Rn.

If U is orthogonal, then UT is orthogonal.



Proof: It suffices to check cancellation on one side and so (i)
is equivalent to (ii). Multiplying out we see that (ii) is
equivalent to (iii).

If U−1 = UT , then (UT )−1 = (U−1)T = (UT )T and so UT is
orthogonal. Condition (iii) for UT is the same as condition (iv)
for U .

�



Symmetric Matrices

An n×n matrix A is called a symmetric matrix when AT = A.

It will be our final task to show that any symmetric map has
an orthonormal basis of eigenvectors and to apply this result.
From the DIAGONALIZATION Theorems 2 and 3 we saw that
a list of eigenvectors associated with distinct eigenvalues is
necessarily li. For a symmetric matrix we have a stronger
result.

SYMMETRY Theorem 2: If A is a symmetric n × n matrix
with AX1 = λ1X1, AX2 = λ2X2 and λ1 6= λ2, then the dot
product XT

1 X2 equals zero.



Proof: From symmetry we have

λ1X
T
1 X2 = (AX1)TX2 = XT

1 ATX2 = XT
1 AX2 = λ2X

T
1 X2.

Since λ1 6= λ2, it follows that XT
1 X2 = 0.

�



When we look at rotations in the plane we saw that it is
possible to have a linear map with no eigenvectors at all. This
occurs when the characteristic polynomial cA(x) = det(xI −A)
of the associated matrix has no real roots.

However, for a symmetric matrix we have

SYMMETRY Theorem 3: If A is a symmetric matrix, then
the roots of the characteristic polynomial cA(x) are all real
numbers. In particular, any complex eigenvalue is in fact real.

We will omit the proof of this. It is given on page 305 of the
book and requires a digression using matrices with complex
entries.



PRINCIPAL AXIS Theorem: If A is an n × n matrix, then
the following are equivalent.

(i) A has an orthonormal basis of eigenvectors.

(ii) A is orthogonally diagonalizable. That is, there exists an
orthogonal matrix P and a diagonal matrix D such that
A = P−1DP = PTDP .

(iii) A is symmetric.

Proof: (i) ⇔ (ii) and (ii)⇒ (iii) are clear.

For (iii) ⇒ (ii) we will skip the proof which is on page 420 of
the book.
�

Let us look at Exercises 8.2/ 5be, page 425.



Singular Values Decomposition

Throughout we fix an m × n matrix A. We will study it by
looking at the n × n symmetric matrix ATA. Recall
SYMMETRY Theorem 1 which says:

The null spaces of A and ATA are the same. That is, AX = 0
if and only if ATAX = 0.

The rank of A equals the rank of ATA.



Because the n × n matrix ATA is symmetric, it has an
orthonormal basis Bn of eigenvectors {u1, . . . ,un} with
eigenvalues {λ1, . . . , λn}. For i , j = 1, . . . , n

(Aui) · (Auj) = uT
i A

TAuj = λju
T
i uj = λj(ui · uj). (8.13)

Because Bn = {u1, . . . ,un} is orthonormal, we have

(Aui) · (Auj) = 0 if i 6= j ,

||Aui ||2 = λi ||ui ||2 = λi .
(8.14)

Therefore all the eigenvalues λi are non-negative. We define
the singular values

σi =
√
λi = ||Aui ||. (8.15)



We can choose the order of {u1, . . . ,un} so that
λ1 ≥ λ2 . . . λr > 0, λr+1 = · · · = λn = 0.

Because ATA is similar to the diagonal matrix
diag(λ1, . . . , λn) (and so has the same rank), it follows that
the rank of A equals the rank of ATA equals the number r of
positive eigenvalues. For i = 1, . . . , r define

vi = (1/σi)Aui . (8.16)

From (8.14) we see that {v1, . . . , vr} is an orthonormal list of
vectors in Rm. pause Furthermore,

Aui = σivi for i = 1, . . . , r ,

Aui = 0 for i = r + 1, . . . , n
(8.17)

because σi = 0 for i > r .



Extend the list {v1, . . . , vr} to obtain
Dm = {v1, . . . , vr , vr+1, . . . , vm} an orthonormal basis for Rm.
For the linear map TA : Rn → Rm, the matrix [TA]DmBn is
obtained by applying TA to the vectors of the basis Bn and
then computing the Dm coordinates to obtain the columns.

[Au1 . . .Aur Aur+1 . . .Aun] = [σ1v1 . . . σrvr 0 . . . 0]. (8.18)

So in Block form

[TA]DmBn = Σ =

(
diag 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
(8.19)

with diag equal to the r × r diagonal matrix diag(σ1, . . . , σr ).



With respect to the standard bases Sn and Sm on Rn and Rm,
the matrix [TA]SmSn = A.

Let Q = [I ]SnBn whose columns are the standard coordinates of
the vectors u1, . . . ,un.

Let P = [I ]SmDm whose columns are the standard coordinates
of the vectors v1, . . . , vm.

These are orthogonal matrices and

A = [TA]SmSn = [I ]SmDm [TA]DmBn [I ]BnSn = PΣQ−1 = PΣQT .
(8.20)

This is called the Singular Values Decomposition (the SVD) of
A.



Let us find the SVD of

A =

1 −1
0 0
1 −1

 .

ATA =

(
2 −2
−2 2

)
.

The basis B2 = {u1,u2} with eigenvalues λ1 = 4, λ2 = 0 has

Q =
1√
2

(
1 1
−1 1

)
.



σ1 = 2 and v1 = 1
σ1
Au1 = 1√

2

1
0
1

 .

Extend to the basis D3 = {v1, v2, v3} with

P = =
1√
2

1 1 0

0 0
√

2
1 −1 0

 .

with

Σ = [A]D3B2 =

2 0 0
0 0 0
0 0 0

 .
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