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Introduction

I The book is W. Keith Nicholson
Linear Algebra with Applications . A pdf version of the
book is free and you can order an inexpensive hardcopy.

I Keep up with the homework. I will be collecting it, usually
every Thursday.

I Ask questions.

I The course information sheet with the term’s homework
assignments is posted on my site:

http : /math.sci .ccny .cuny .edu//peoplename = EthanAkin



I I will be posting there a pdf of the slides I am using here.
The first set is already up. I will post the others as we get
to them.

I The class will meet from 9:30 am to 10:45 on Tuesdays
and Thursdays in NAC 6/121.

I Office: MR (Marshak) 325A

Office Hours: Tuesday 11:00am-1:00pm,
Thursday 11:00am-12:00.

Email: eakin@ccny.cuny.edu



Number Facts

First recall the names of some properties of real numbers. For
addition we have the

Commutative Law: a + b = b + a,

Associative Law: a + (b + c) = (a + b) + c .

We use these without thinking about them. We add up a
bunch of numbers in any order we want.

For example, we may group the positives together and then
the negatives and them compute the difference.

It is the same for multiplication.



On the other hand, when we combine multiplication and
addition, we have the

Distributive Law: a(b + c) = ab + ac .

Hidden here is the Order of Operations Rule of Notation we
requires that we perform the multiplications before the
additions. Thus, we need not write (ab) + (ac).

This is important enough that its use in different directions
have different names: From left to right it is “clearing
parentheses” or “multiplying out”, while from right to left it is
“common monomial factoring” or just “factoring”.



This is all familiar, but we should pause to look back at the
commutative law for multiplication: 3 · 5 = 5 · 3.

But remember multiplication is repeated addition. So

three 5’s is 5 + 5 + 5.

five 3’s is 3 + 3 + 3 + 3 + 3.



If the fact that these are equal doesn’t surprise you, think
about repeated multiplication

5 × 5 × 5 is not equal to 3 × 3 × 3 × 3 × 3.

Why does it work for addition?



Look at this rectangle of 15 x’s.

x x x x x
x x x x x
x x x x x

We can think of this as five columns of three x’s each or as
three rows of five x’s each.

This RECTANGLE PICTURE where we think of the same
rectangle of numbers either as a collection of rows or as a
collection of columns is going to be essential throughout the
course.



Furthermore, we will repeatedly use the fact that you get the
same thing if you first add up the rows or if you first add up
the columns.

That is, 5x + 5x + 5x = 3x + 3x + 3x + 3x + 3x . Both are
15x .

But what if you multiply? You don’t get 35 = 53. What you
get is x5 · x5 · x5 = x3 · x3 · x3 · x3 · x3. Both are x15. This is
the second law of exponents: (xn)m = (xm)n = xn·m.



Vectors from the Past

When you met vectors in Calculus or Physics they were
defined as objects with magnitude and direction (as opposed
to a scalar with magnitude alone). They were represented as
arrows pointing in the appropriate direction and with length
representing the magnitude.

Addition of vectors is described using the ‘parallelogram law’
which is justified because this is how velocities or forces
combine. Think of the Force Table Experiment in Physics.

Multiplying by a positive scalar preserves the direction,
changing only the length by a suitable factor. Multiplying by
(-1) reverses the direction, preserving the length.



Computation using the geometric definitions can be tedious,
but when coordinates are introduced, the computations
become easy. For addition we just add the corresponding
coordinates and for multiplication by a scalar c we just
multiply each coordinate by c .

This pairing of geometric meaning with coordinate
computation is crucial for the initial applications of vectors.

In the case of the dot product, the original definition is given
by coordinates, but the applications again depend on the
geometric meaning: a · b = |a||b| cos(θ) where θ is the angle
between the two vectors.



We will move into the theory of Linear Algebra in two steps.
First, we will focus on just the coordinate approach, looking at
different arrays of real numbers. Later we will redefine what a
vector is when we consider abstract vector spaces.

To illustrate this move, we will extend the definition of dot
product between vectors in R3 to vectors in Rn where n can
be any positive integer (think n = 17). So a ∈ Rn is a list of
length n consisting of real numbers. We write

a = (a1, a2, . . . , an).

We define the dot product

a · b = a1b1 + a2b2 + · · ·+ anbn.

That is, just as in the R3 case we multiply the corresponding
coordinates and then sum the products.



Notice that a · a = a21 + a22 + · · ·+ a2n which is positive unless
a is the zero vector

From the commutative law of multiplication for real numbers
we get a · b = b · a. That is, we can reverse the order in the
dot product.

If we multiply b by a scalar c , we can pull c out of the dot
product. That is, a · (cb) = c(a · b) because the factor of c
which occurs in each term of the sum can be ”factored” out of
the sum. Notice that the notation hides the occurrence of two
different kinds of multiplication: In cb the scalar c multiplies
times the vector b, while c(a · b) is the product of two real
numbers.



The important property a · (b + c) = a · b + a · c is shown
by using the following array:

a1b1 + a2b2 + . . . = a · b
a1c1 + a2c2 + . . . = a · c

a1(b1 + c1) + a2(b2 + c2) + . . . = a · (b + c)

Notice this is an example of adding different ways in the
RECTANGLE PICTURE.



Matrices: Linear Operations

In addition to horizontal (and vertical) lists of numbers, we
will use rectangular arrays of numbers. Such a rectangular
arrangement is called a matrix (plural matrices). These are
initially motivated by their application to systems of linear
equations.

3x − 2z = 7
x − y + z = 5

y − z = −2

In order to describe the system all that we need is the location
and value of each of the various coefficients,



3 0 −2
1 −1 1
0 1 −1


is called the coefficient matrix of the system. When we adjoin
the numbers on the other side of the equations, we get the
augmented matrix of the system.3 0 −2 | 7

1 −1 1 | 5
0 1 −1 | −2


We will first consider matrices as objects in themselves and a
bit later see how they are used to solve systems of equations.



For positive integers m and n an m × n matrix A is a
rectangular array of numbers with m rows and n columns.

We use the notation A = [aij ] with the row index i varying
from 1 to m and the column index j varying from 1 to n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
· · ·
· · ·
· · ·

am1 am2 . . . amn



We will sometimes put in a comma for clarity so that a3,5 is the
(3, 5) entry: the number in the 3rd row and the 5th column.



We call m × n the size or shape of an m × n matrix A.

An important special case is when m = n. We call this a
square matrix of size n × n.

When m = 1 so there is only one row we call A a row vector
of length n and when n = 1 we call it a column vector of
length m.

When we look at an m × n matrix we can see it as a stack of
m row vectors each of length n, or, alternatively, as a list of n
column vectors each of length m. This is just the
RECTANGLE PICTURE described above.



The linear operations of addition and multiplication by scalars
works just as it did for vectors in R3.

We can only add two matrices of the same shape and when A
and B are both m × n matrices, we add by summing the
corresponding entries for each position. That is, if A = [aij ]
and B = [bij ], then A + B = [aij + bij ].

If k is a scalar, i.e. a real number, (or sometimes a complex
number), then for kA we just multiply each entry by k . That
is, if A = [aij ], then kA = [kaij ].

We then have that A + B and kA also have the same shape,
namely m × n.



For each shape m× n, there is an m× n zero matrix 0 with all
entries equal to 0. It acts like the number zero does under
addition. That is, A + 0 = 0 + A = A. Furthermore, the zero
matrix equals 0A for any m × n matrix A.

The matrix −A = (−1)A cancels A. That is,
A + (−A) = (−A) + A = 0 and we write A− B for A + (−B).



The obvious rules for this matrix arithmetic are given as
Theorem 2.1.1 on page 40 of WKN.

A + B = B + A, A + (B + C ) = (A + B) + C ,

k(pA) = (kp)A 1A = A

k(A + B) = kA + kB (k + p)A = kA + pA.

(1.1)

Each of these is checked by looking at each entry separately.
We apply these rules without thinking about them just as we
do with arithmetic of numbers.

If A1, . . . ,Ap is a list of m × n matrices and k1, . . . , kp is a list
of scalars, then k1A1 + k2A2 + . . . + kpAp is the linear
combination of A1, . . . ,Ap with coefficients k1, . . . , kp. Here,
just as with numbers, we are using the order of operations rule
which says do the scalar multiplications first and then add up.



The transpose of the m × n matrix A is the n ×m matrix AT

obtained by interchanging the rows and columns, so that if
A = [aij ] then AT = [aji ]. So (AT )T = A. Again by looking at
each entry separately we see that

(A + B)T = AT + BT (kA)T = k(AT ). (1.2)

As the book points out we can think of obtaining AT by
flipping A across the main diagonal, the entries a11, a22, . . . .



A and AT have the same shape only when m = n and so when
A is a square matrix.

A square matrix A is called symmetric when A = AT . For any
square matrix A, the sum A + AT is symmetric (prove it!)

An important example of a symmetric is a diagonal matrix
with zero entries off the main diagonal.

Let us look at the Exercises: 2.1/2bfg, 3bdfh, 4b, 11, 12, 13,
14d, pages 44-45.



Sigma Notation for Sums

We pause to review the Sigma notation for sums which you
have seen for Riemann sums and for infinite series.

If a = (ai) ∈ Rn, then
∑n

i=1 ai means a1 + a2 + . . . an.

The distributive law, clearing parentheses, implies
k ·
∑n

i=1 ai =
∑n

i=1 k · ai .

Also,
∑n

i=1 ai +
∑n

i=1 bi =
∑n

i=1 (ai + bi) when
a,b ∈ Rn.



This is really another example of the RECTANGLE PICTURE:

a1 + a2 + . . . an =
∑

i ai
b1 + b2 + . . . bn =

∑
i bi

(a1 + b1) + (a2 + b2) + . . . (an + bn) =
∑

i(ai + bi)

The dot product can be written as a · b =
∑n

i=1 ai · bi .



Now suppose that A = (aij) is an m × n matrix. We can write
S =

∑
i ,j aij for the sum of all of the entries.

But now we are going to use the RECTANGLE PICTURE
again.

If we fix the row index i , then
∑n

j=1 aij just adds up row i . If
we do this for each i and then add up the row sums, we get S .

Instead we can compute each column sum
∑m

i=1 aij and then
add up the column sums to get S . That is,∑

i

(
∑
j

aij) =
∑
i ,j

aij =
∑
j

(
∑
i

aij). (1.3)



You have seen this in a more advanced context.

In calculus 3, to compute the integral of f (x , y) over a
rectangle [a, b]× [c , d ], you can use either of the iterated
integrals:

∫ x=b

x=a

(

∫ y=d

y=c

f (x , y) dy) dx or

∫ y=d

y=c

(

∫ x=b

x=a

f (x , y) dx) dy .



Multiplication of Matrices

If A = [aij ] is an m × n matrix and B = [bjk ] is an n × p
matrix, then we the product AB = C = [cik ] is an m × p
matrix. Notice we use the same index j as the column index
for A and the row index for B because in both cases j ranges
from 1 to n.

It is given by the Multiplication Formula

AB = C , with cik =
n∑

j=1

aijbjk . (1.4)

Again it is the picture which reveals the meaning of the
formula.



We cut A into rows. There are m rows, each of length n. We
cut B into columns. There are p columns, each of length n.

The ik entry, cik of C = A · B is the dot product of Rowi of A
with Colk of B . This makes sense because each of these has
length n.

In actually doing matrix multiplication, write B above and to
the right of A so that the product AB is below B and to the
right of A.

See illustration Matrix Multiplication 01a.



Of the properties for multiplication, most important is the
Commutative Law because it is usually not true.

If A is m × n, and B is n × p, then AB is m × p. If m 6= p,
then BA is not even defined.

If m = p, then AB is m×m and BA is n× n. Both are square
matrices but if n 6= m, they are of different size and so
certainly not equal.

Finally, if n = m = p, then A,B ,AB and BA are all square
matrices of the same size but still it is usually not true that
AB = BA.



For example, if A has a row of zeroes, then the corresponding
row in the product AB consists of zeroes.

Similarly, if B has a column of zeroes, the corresponding
column in the product AB consists of zeroes.

To summarize, in matrix multiplication the order of the factors
is very important and AB = BA is usually NOT TRUE. For
example, with X an n × 1 column vector, AX is an m × 1
column vector, but XA is undefined. If Y is a 1×m row
vector, then YA is a 1× n row vector.



The case AX with A an m× n matrix and X an m× 1 matrix,
i.e. a column vector, is especially important. There are two
pictorial representations of the same thing.

Think of X as a column of n unknowns. Row i of A has length
n. We take the dot product with X and set it equal bi . This
gives us a system of m linear equations in n unknowns with
coefficient matrix A and augmented matrix A|B . Thus, we can
write the system of m equations using a single matrix equation
AX = B . See illustration Matrix Multiplication 01b.

Instead, think of X as a column of n coefficients, and regard A
as a list of n columns A = [C1 C2 . . . Cn] each of length m.
Then B = AX writes the column B as a linear combination of
the columns of A.

x1C1 + x2C2 + · · ·+ xnCn = B .

See illustration Matrix Multiplication 01c.



For the Associative Law for matrix multiplication we will use
the sum formula and the RECTANGLE PICTURE.

Start with matrices A,B and C . Suppose A = (aij) is m × n,
B = (bjk) is n × p and C = (ck`) is p × q.

AB is m × p with (AB)ik =
∑

j aijbjk .

BC is n × q with (BC )j` =
∑

k bjkck`.

(AB)C and A(BC ) are both m × q and we have:



((AB)C )i` =
∑
k

(AB)ikck` =

∑
k

(
∑
j

aijbjk)ck` =
∑
k

(
∑
j

aijbjkck`).

(A(BC )i` =
∑
j

aij(BC )j` =

∑
j

aij(
∑
k

bjkck`) =
∑
j

(
∑
k

aijbjkck`).

The end results are equal from the RECTANGLE PICTURE
or, to be precise, from equation (1.3).



The other properties of multiplication follow directly from the
properties of the dot product.

(kA)B = A(kB) = k(AB).

A(B + C ) = AB + AC , (A + D)B = AB + DB .
(1.5)

Here A and D are m × n while B and C are n × p.

Also we have
(AB)T = BTAT . (1.6)

Notice the reverse of order. BT is p × n and AT is n ×m.

Let us look at Exercises 2.3/1ghi, 5ac, 6c, 7c, pages 76-77.



Block Multiplication

With A m × n and B n × p matrices so that AB is an m × p
matrix, partitioning the matrices in various ways can lead to
associated multiplication formulae.

(
A1

A2

)(
B1 | B2

)
=

(
A1B1 A1B2

A2B1 A21B2

)
.

Here A1 is u × n,A2 is (m − u)× n, B1 is n × v , and B2 is
n × (p − v) for some u, v .

(
A1 | A2

)(B1

B2

)
=
(
A1B1 + A2B2

)
.

Here A1 is m × u, A2 is m × (n − u), B1 is u × p and B2 is
(n− u)× p. Notice that this time the partition of the columns
of A must use the same size divisions as does the partition of
the rows of B .



As is indicated in the book, the most important application of
Block Multiplication concerns n × n square matrices A and B
in block triangular form with A1 and B1 square matrices of the
same size:(

A1 X
0 A2

)(
B1 Y
0 B2

)
=

(
A1B1 A1Y + XB2

0 A2B2

)
.



Identity and Inverse Matrices

We have seen that for each shape m× n there is a zero matrix
0mn, with every entry equal to 0. It acts as the number zero
does with respect to addition. That is,
A + 0mn = 0mn + A = A for any m × n matrix A.

There are analogues for the number 1 as well. For every n
there is an n× n square matrix In. However, not all the entries
are 1. Instead, the main diagonal entries, the (1, 1), (2, 2), . . .
entries equal 1 and the off-diagonal entries are 0. So, for
example,

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


If A is an m × n matrix then ImA = A = AIn. This is easily
checked by looking at the pictures for multiplication.



Alternatively, we can use the multiplication formula. The ij
entry of the identity matrix I is the so-called Kronecker delta

δij =

{
1 if i = j ,

0 if i 6= j .

So (AI )ik =
∑

j aijδjk . But δjk = 0 except when j = k and
δkk = 1. So (AI )ik = aik . That is, AI = A.

Similarly, IA = A.



We have seen that any m × n matrix A has an additive inverse
−A which cancels it under addition. That is, A + (−A) = 0.

Only a nonzero number has a reciprocal which cancels it under
multiplication (“You can’t divide by zero.”). In the same way
an n × n matrix A may have an inverse A−1 which cancels it
under multiplication, but not all do.

The inverse A−1 of an n × n matrix A is the matrix which
satisfies AA−1 = A−1A = In. Since A cancels A−1 we have
(A−1)−1 = A.

We speak of the inverse because A has at most one inverse. If
Q is another matrix which cancels A, then

Q = QIn = Q(AA−1) = (QA)A−1 = InA
−1 = A−1.



As you would expect, the square zero matrices do not have
inverses, but many nonzero square matrices are also singular
(meaning they don’t have an inverse).

If A has a row of zeroes, then it cannot happen that AB = I
for any matrix B (Why not?). Similarly if A has a column of
zeroes then it cannot happen that BA = I .

Thus, if A has a row or column of zeroes then it does not have
an inverse.



In the positive direction we have (AB)−1 = B−1A−1.

This simple looking equation requires some interpretation. It
says: If n × n matrices A and B each have inverses, then the
product AB has an inverse and its inverse is the product of the
inverse of A and B in the reversed order.

We prove this by showing that B−1A−1 does what the inverse
of AB is supposed to do, namely to cancel AB :

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly in the other direction. Notice it won’t work if we
used A−1B−1 instead. The product ABA−1B−1 is often not
equal to I because you can’t usually move the B past the A−1

to cancel things out. In general, for invertible n × n matrices
A1,A2, . . . ,Ak we have

(A1A2 . . .Ak)−1 = A−1k A−1k−1 . . .A
−1
1 . (1.7)



Suppose that the n × n matrix A is in block triangular form

with A =

(
A1 X
0 A2

)
with A1 u × u, A2 (n − u)× (n − u)

and X u × (n − u). If A1 and A2 are invertible, then A is
invertible with

A−1 =

(
A−11 −A−11 XA−12

0 A−12

)
which you check by Block Multiplication. Conversely, as in

Example 2.4.11, if P =

(
C V
W D

)
, then

In = A P =

(
A1C + XW A1V + XD

A2W A2D

)
So A2W = 0,A1C + XW = Iu,A2D = In−u. We use a fact
proved later that we need only check cancellation on one side.
It follows that A2 is invertible and so W = A−12 A2W = 0.
Hence, A1C = Iu and so A1 is invertible as well.



In the 2× 2 case there is a simple way of getting the inverse if
it exists. For a 2× 2 matrix A define the adjugate by :

A =

(
a b
c d

)
=⇒ A′ =

(
d −b
−c a

)
. (1.8)

That is, interchange the diagonal elements and reverse the
sign of the off-diagonal elements.

Let det = ad − bc , the determinant of A. Check that
AA′ = A′A = detI . So if det 6= 0, then A−1 = 1

det
A′.

If det = 0, then AA′ = 0 and so if A were invertible,
A′ = A−1AA′ = 0 and so all the entries of A would be zero.
Thus, A is not in fact invertible.

All of this will generalize, but in a not so simple way, to the
n × n case.

Let us look at Exercises 2.4/2b, 26d, pages 90, 93.



Echelon Form

Remember that to describe a system of linear equations, we
use the augmented matrix (A|B) where A is the coefficient
matrix and B is the column vector of constants on the right
side of the equal signs.

In order to solve a system of equations we will manipulate the
augmented matrix to get an augmented matrix of a system
which is equivalent - that is, with the same solutions - but
which is easy to solve.

We first describe the form which is our goal. Then we will
describe how to get from the original system to one with the
special form.



A matrix is in Echelon Form when it satisfies the following
conditions:

(i) Any zero rows are at the bottom.

(ii) The first nonzero entry from the left in any nonzero row is
a 1, called a leading 1.

(iii) Each leading 1 is to the right of the leading 1’s in the
rows above it.

Thus, below and to the left of any leading 1 are only 0’s.

The matrix is in Reduced Echelon Form when it satisfies, in
addition:

(iv) Each leading 1 is the only nonzero entry in its column.

That is, above, as well as below, any leading 1 are only 0’s.



Now suppose the augmented matrix is in Echelon Form.

Consistency: If there is a leading 1 in the last, constants,
column then the system is inconsistent. That is the is no
solution. Observe that the equation 0x1 + 0x2 + . . . 0xn = 1
has no solution.

If the system is consistent, then the leading 1’s all occur in
columns associated with variables. These are called the
leading 1 variables or the pivot variables. The remaining
variables, if any, are called free variables.

To solve the system we work up from the bottom. We use
each nonzero row to solve for the pivot variable associated
with its leading 1. Each free variable is a parameter, an
arbitrary constant, which may take on any value.



For example, suppose that the row is (0, 0, 1, 7,−1, 2| − 3).
The pivot variable is x3 and we have
x3 = −3 − 7x4 + x5 − 2x6. Because we are working up
from the bottom, we have already solved for x4, x5 and x6.
Each of these is a free variable parameter, or else a pivot
variable for which we have a solution and we substitute it into
this equation.

If x6 and x4 were free variables, then we would let x6 = r and
x4 = s. If we had found x5 = 11− 2r , then we substitute to
get

x3 = −3 − 7s + (11− 2r) − 2r = 8 − 7s − 4r .




0 1 0 0 0 0 0 | 0
0 0 1 0 2 1 −4 | −3
0 0 0 1 1 1 1 | 7
0 0 0 0 0 1 2 | 5
0 0 0 0 0 0 0 | 0


is in Echelon Form with solution, working from the bottom.

x7 = r .

x6 = 5− 2r .

x5 = s.

x4 = 7− x5 − x6 − x7 =

7− s − (5− 2r)− r = 2− s + r .

x3 = −3− 2x5 − x6 + 4x7 =

−3− 2s − (5− 2r) + 4r = −8− 2s + 6r .

x2 = 0.

x1 = t.



From Reduced Echelon Form, it is easier to solve:1 3 0 −2 0 | 3
0 0 1 1 0 | −5
0 0 0 0 1 | −1


x5 = −1.

x4 = r .

x3 = −5− r .

x2 = s.

x1 = 3− 3s + 2r .

Let us look at Exercises 1.2/3bd, page 17.



We now introduce the operations that we use to transform a
matrix into Echelon Form.

The Elementary Row Operations are of three types.

Type I: Interchange two rows:
Ri ↔ Rj .

Type II: Multiply a row by a nonzero scalar:
Ri → kRi .

Type III: To a row add a multiple of a copy of another row:
Ri → Ri + kRj .

Each operation preserves the shape of the matrix and, when
applied to an augmented matrix, each yields an augmented
matrix for a system with the same solutions.



Notice that each type is reversible by an operation of the same
type.

Type I: Ri ↔ Rj is its own inverse.

Type II: Ri → kRi is reversed by Ri → (1/k)Ri (which is why
we required k 6= 0).

Type III: Ri → Ri + kRj is reversed by Ri → Ri − kRj .

For two m × n matrices A,B we call B row equivalent to A if
we can get from A to B by a sequence of elementary row
operations. We write this as A ∼ B . We allow the sequence to
be empty (no operations at all) which shows that A ∼ A for
any matrix A. It is clear that A ∼ B and B ∼ C implies
A ∼ C . Finally, because the operations are reversible, we see
that A ∼ B implies B ∼ A. This says that row equivalence is
an equivalence relation.



We can transform any matrix A to a row equivalent matrix in
Echelon Form and from there to Reduced Echelon Form by
using the Gaussian Algorithm.

Step 1: If the matrix consists entirely of zeroes, stop. The
matrix is in Row Echelon form.

Step 2: Find the first column from the left with a nonzero
entry k . If it is not in the first row use a Type I operation to
move it to the top.

Step 3: Use the Type II operation R1 → (1/k)R1 to convert
the k to a leading 1.

Step 4: Use Type III operations Ri → Ri − aiR1 to obtain 0’s
in each row below the leading 1. Here ai is the entry of Ri in
the column of the leading one.

Step 5: Repeat Steps 1 - 4 on the matrix consisting of the
rows below R1.



The process stops at a Step 1 or after a Step 4 when there are
no more rows. The matrix is now in Echelon Form.

Notice that we are moving down and to the right as we
transform to Echelon Form.

Once the matrix is in Echelon Form we may further transform
to get Reduced Echelon Form. Notice that already below each
leading 1 there are only 0’s. Now we move up and to the left
to eliminate the nonzero entries above the leading 1’s

Step 6: For the leading 1 in Ri , use Type III operations
Rj → Rj − ajRi to obtain 0’s above the leading 1 in Ri . Here
aj is the entry of Rj in the column of the Ri leading 1.

We repeat, moving upwards until above every leading 1 there
are only 0’s. The matrix is now in Reduced Echelon Form.
Notice that going to Reduced Echelon Form does not change
the number or position of the leading 1’s.



While there may be several matrices in Echelon Form which
are row equivalent to A, there is only one in Reduced Echelon
Form. This is Theorem 2.5.4 proved in the book on page 99,
but we will omit the proof.

We are not restricted to the steps given in the algorithm.
Often we obtain the leading 1’s in other ways to avoid
fractions. For example, consider

A =

(
2 3
1 5

)
, B =

(
2 3
3 5

)
C =

(
5 3
3 5

)

For A we use R1 ↔ R2 to get the leading 1. For B we would
use R2 → R2 − R1 to get a leading 1 in the second row which
we would then switch to the top using R1 ↔ R2 . For C we
can use R2 → 2R2 and then R2 → R2 − R1 to get a leading 1
in the second row which again we would switch to the top
using Type I operation.

Let us look at Exercises 1.2/5c, 7ab, pages 17-18.



Rank of a Matrix

The rank of a matrix A is the number of leading 1’s in a
matrix in Echelon Form which is row equivalent to A. That is,
put A in Echelon Form and count the leading ones. Notice
that for an m × n matrix the rank r is at most the minimum
of m and n because there is at most one leading 1 in any row
or column.

An augmented matrix represents an inconsistent system when
there is a leading 1 in its last column when it is put in Echelon
Form. Thus, the system is consistent when the rank of the
augmented matrix equals the rank of the coefficient matrix.

For a consistent system with coefficient matrix m× n and rank
r , the number of equations is m and the number of variables is
n. So the number of pivot variables is r ≤ n and the number
of free variables, i.e. the number of parameters, is n − r .



Now assume that A is an m ×m matrix which is row
equivalent to Q in Reduced Echelon Form. The following is
the first version of the so-called Fredholm Alternative.

Fredholm Alternative (version 1): For A an m ×m matrix
row equivalent to Q in Reduced Echelon Form, Either:

(i) r = RankA = m and so Q = Im because there is a leading
1 in every row and every column.

or

(ii) r = RankA < m and so Q has a row of zeroes. In fact, it
has m − r rows of zeroes.



Homogeneous Systems

A system of equations 0 solutions when the system is
inconsistent, 1 solution when the system is consistent and
n = r and infinitely many solutions when the system is
consistent and n > r .

A system is called homogeneous when the column of constants
is 0. In matrix form a homogeneous system is AX = 0.

If X1,X2 are solutions of AX = B , then the difference
Z = X1−X2 is a solution of the homogeneous system. If Xp is
a particular solution of the system AX = B , then all solutions
are of the form Xp + Z where Z is a solution of the
homogeneous system.

A homogeneous system always has the trivial solution Z = 0.
This is the only solution when n = r and there are infinitely
many solutions when n > r .



Elementary Matrices

The fundamental property of row operations is the following.
The every row operation, labeled RowOP we have

RowOp(AB) = RowOp(A)B . (2.1)

For any row operation, the associated elementary m ×m
matrix is defined to be E = RowOP(Im). That is, apply the
row operation to the identity matrix.

For any m × n matrix A we have:

RowOp(A) = RowOp(ImA) = RowOp(Im)A = E A. (2.2)

That is, doing a row operation to A is the same as multiplying
on the left by the associated elementary matrix.



Recall that every row operation RowOP has a reverse row
operation which we will label RowOP . Let E and E be the
associated elementary matrices.

Im = RowOP(RowOp(Im)) = RowOP(E ) = E E

and similarly Im = E E . That is E cancels E and so
E = E−1.

Thus, every elementary matrix is invertible and its inverse is
the elementary matrix associated with the reverse row
operation.



If A is an m × n matrix and Q is the matrix in Reduced
Echelon Form which is row equivalent to A, then there is a
sequence of row operations which takes us from A to Q.

Q = RowOpk(RowOpk−1(. . .RowOp2(RowOp1(A)) . . . ))

= Ek Ek−1 . . .E2 E1 A.
(2.3)

where E1,E2 etc are the elementary matrices associated with
RowOp1,RowOp2, . . . .

Because the product of invertible matrices is invertible,
U = Ek Ek−1 . . .E2 E1 is invertible with inverse
U−1 = E−11 E−12 . . .E−1k−1 E−1k . and we have

Q = U A, U−1 Q = A. (2.4)



Fredholm Alternative (version 2): For A an m ×m matrix
row equivalent to Q in Reduced Echelon Form, so that
Q = UA and U−1Q = A with U a product of elementary
matrices. Either:

(i) r = RankA = m, Q = Im and so U−1 = A is a product of
elementary matrices and so is invertible with inverse U .

For each m × 1 column vector B the system AX = B has the
unique solution X = A−1B , because AX = B implies
X = A−1AX = A−1B and, conversely, X = A−1B implies
AX = AA−1B = B .

For B any m × p matrix, AB = 0 implies B = A−10 = 0.

or else



(ii) r = RankA < m, Q has m − r rows of zeroes, and so A
is not invertible since Q = UA is not invertible. There exist
m × 1 column vectors B such that the system AX = B is

inconsistent and so has no solution. If em =


0
0
. . .
1

 then

(
Q | em

)
is the augmented matrix of an inconsistent system

and so
(
A | U−1em

)
is the augmented matrix of an

inconsistent system.

On the other hand, if AX = B is consistent, for example if
B = 0 and the system is homogeneous, then there are
infinitely many solutions with m − r parameters. If X is a
nontrivial solution of the homogeneous system AX = 0 and B
consists of m copies of the column X , then B is a nonzero
m ×m matrix such that AB = 0.



We have seen that the product of invertible matrices is
invertible. Conversely, if a product of square matrices is
invertible then each factor is invertible.

Theorem 2.01: If A,B are m ×m matrices, then AB = C is
invertible if and only if both A and B are invertible.

Proof: We have already seen that if A and B are invertible,
then (AB)−1 = B−1A−1.

Now suppose that C = AB is invertible. From what we have
just seen, it follows that UC is invertible for any invertible
matrix U . If A is not invertible, then there exists U a product
of elementary matrices, and so invertible, such that UA has a
row of zeroes. Then UC = UAB has a row of zeroes, but this
is impossible because UC is invertible.

It follows that A is invertible. Hence, B = A−1AB = A−1C is
invertible as well.
�



Thus, we have (technically by induction)for m ×m matrices
A1,A2, . . . ,Ak

The product A1A2 . . .Ak is invertible ⇐⇒
A1,A2, . . . ,Ak are all invertible.

We used earlier the fact that for square matrices it suffices to
check cancelation on one side.

Corollary 2.02: If A,B are m ×m matrices with AB = Im,
then A and B are invertible with A−1 = B .

Proof: From the Theorem it follows that A and B are
invertible because Im is invertible.

It follows that A−1 = A−1Im = A−1AB = B .
�



A square matrix is invertible if and only if its transpose is
invertible. In fact,

(AT )−1 = (A−1)T . (2.5)

We have to show that (A−1)T cancels AT . Remember that
(AB)T = BTAT . Therefore

Im = ITm = (A−1A)T = AT (A−1)T .



For an m×m matrix A, we can use the Gaussian Algorithm to
compute the inverse of A if it exists.

Begin with the m × 2m matrix (A | Im) with A on the left and
the identity on the right. We do row operations to put this
matrix in Reduced Echelon Form.

Case 1: If A is invertible, then when we reach Reduced
Echelon Form we have Q = Im = UA on the left side. We are
doing the same row operations on the right side and so we end
with UIm = U on the right. That is, when we reach the
identity on the left, we have the inverse of A on the right.

Case 2: If A is not invertible, then at some point we see a row
of zeroes on the left side. We may then stop, recognizing that
A is row equivalent to a matrix with a row of zeroes and so we
see that A is not invertible.

Let us look at Exercises 2.4/2k, 3b, page 91.



Linear Transformations

A linear transformation T : Rn → Rm is a function which
satisfies:

T1: T (X + Y ) = T (X ) + T (Y ). That is, you get the same
result whether you first add and then apply T or if you apply
T to each term and then add.

T2: T (cX ) = cT (X ). That is, you can ‘pull out’ constants.

It follows that applying T commutes with forming linear
combinations:

T (c1X1+c2X2+· · ·+ckXk) = c1T (X1)+c2T (X2)+· · ·+ckT (Xk).
(2.6)



If A is an m × n matrix, then TA : Rn → Rm is defined by
TA(X ) = AX . The properties of matrix multiplication imply
that TA is linear. In fact, every linear transformation from Rn

to Rm is of this form.

To see this we define the standard basis of Rn to be the list
e1, e2, . . . , en of columns of the identity matrix In. Later we
will discuss the idea of a basis in general. For X ∈ Rn we
have:

X =


x1
x2
·
·
xn

 = x1


1
0
·
·
0

+ x2


0
1
·
·
0

+ · · ·+ xn


0
0
·
·
1

 .



That is, X = x1e1 + x2e2 + · · ·+ xnen.

Applying the linear map T we have
T (X ) = x1T (e1) + x2T (e2) + · · ·+ xnT (en).

This means that if A = [T (e1)T (e2) . . .T (en)], the matrix
with columns T (e1),T (e2), . . .T (en) then
T (X ) = AX = TA(X ).

Notice that each column T (ei) lies in Rm and so A is an
m × n matrix.



If T : Rn → Rm and S : Rp → Rn are linear maps, then the
compositionT ◦ S : Rp → Rm is defined by
T ◦ S(X ) = T (S(X )). That is, T ◦ S of X is T of S of X .
This is the notion of composed map to which the Chain Rule
is applied in Calculus.

The composition of linear maps is linear. This is easy to check
directly, but it follows from the fact that composition
corresponds to matrix multiplication.

For A an m × n and B an n × p matrix

TA ◦ TB = TAB . (2.7)

Because

TA ◦ TB(X ) = A(BX ) = (AB)X = TAB(X ).



For example, the counterclockwise rotation Rθ through the

angle θ sends

(
1
0

)
to

(
cos θ
sin θ

)
and sends

(
0
1

)
to

(
− sin θ
cos θ

)
.

Thus,

Rθ = TA with A =

(
cos θ − sin θ
sin θ cos θ

)
.

As shown in Example 2.5.7 on page 111, we can obtain the
addition formulae for sine and cosine by observing
Rθ ◦ Rφ = Rθ+φ and multiplying the corresponding matrices.



For In we have TIn = I : Rn → Rn, the identity map with
I (X ) = X for all X in Rn.

It then follows that if A is an invertible n × n matrix, then
TA−1 : Rn → Rn is the inverse function for TA. That is,
TA−1 ◦ TA = I = TA ◦ TA−1 . So

(TA)−1 = TA−1 .



Determinants

You should already be familiar with 2× 2 determinants and
even, via the cross product in Calculus, with 3× 3
determinants. In general, the determinant is a function which
associates to every n × n square matrix A a number det(A).

Before describing the properties which characterize the
determinant, we first mention two important properties which
are not true.

det(A + B) = det(A) + det(B) NOT TRUE.

det(kA) = kdet(A) NOT TRUE.

That is, the function det is not a linear transformation. Now
for the properties which are true.



DET 1: For the n × n identity matrix, det(In) = 1.

We will later see that det(AB) = det(A)det(B). With
A = B = In this implies that det(In) = det(In)det(In).

Now the solutions of the equation x = xx = x2, i.e.
x(x − 1) = x2 − x = 0 are 0 and 1.

If the determinant of In were equal to 0, then for every n × n
matrix A, A = AIn would imply
det(A) = det(A)det(In) = 0. That is, every matrix would
have determinant 0.

We are left with the condition that det(In) = 1.



DET 2: The determinant is a multi-linear function of the
rows.

We mentioned that the determinant is not a linear function.
When we looked at the dot product we saw that if you fix one
vector, and were allowed to vary the other vector, then the dot
product was a linear function of the variable vector. That is,
the dot product was linear in each variable separately. We call
such a function of two variables bi-linear. Similarly, if we fix all
but one row of a matrix and allow the remaining row to vary,
the determinant is a linear function of the remaining, variable,
row.

To see what this means we will use the notation Ri(A) to
mean the i th row of the matrix A.



DET 2a: If A and B are n × n matrices with Ri(B) = cRi(A)
and Rj(B) = Rj(A) for all j 6= i , then det(B) = cdet(A).

That is, we can ‘pull out’ of the determinant a common factor
c from any row.

Corollary 3.01: If A has a row of zeroes, then det(A) = 0.

Proof: The number 0 is a common factor of a row of zeroes
and so we can pull it out of the determinant.
�

Corollary 3.02: det(cA) = cndet(A).

Proof: We can pull a common factor of c from each of the n
rows. �



DET 2b: If A,B and C are n × n matrices with
Ri(C ) = Ri(A) + Ri(B) and Rj(C ) = Rj(B) = Rj(A) for all
j 6= i , then det(C ) = det(A) + det(B).

For example, if

A =

a1 a2 a3
x1 x2 x3
b1 b2 b3

 ,B =

a1 a2 a3
y1 y2 y3
b1 b2 b3


and

C =

 a1 a2 a3
x1 + y1 x2 + y2 x3 + y3
b1 b2 b3


then det(C ) = det(A) + det(B).



DET 3: Interchanging two rows multiplies the determinant by
(−1). That is, if B is obtained from A by interchanging two
rows and leaving the rest fixed, then det(B) = −det(A).

Corollary 3.03: If A has two identical rows, i.e. Ri(A) = Rj(A)
for some i 6= j , then det(A) = 0.

Proof: The matrix B obtained by interchanging the two rows
is the same as A. From DET 3, we have det(B) = −det(A).
But since B = A, det(B) = det(A). That is,
−det(A) = det(A). The only number x such that −x = x is
x = 0.
�

One can show that from DET 2b and this Identical Row
Property, you can get DET3.



These three properties characterize the determinant. The
remaining properties are derived from these.

DET 4: For each elementary row operation there is a nonzero
multiplier µ so that for any n × n matrix A
det(RowOp(A)) = µdet(A). In particular, if E = RowOP(In)
is the associated elementary matrix, then det(E ) = µ.

DET 4a: For a Type I row operation Ri ↔ Rj , µ = −1 and
so det(RowOp(A)) = −det(A).

Proof: This is a restatement of DET 3.

DET 4b: For a Type II row operation Ri → c Ri with c 6= 0,
µ = c and so det(RowOp(A)) = c det(A).

Proof: This is a restatement of DET 2a.



DET 4c: For a Type III row operation Ri → Ri + k Rj , µ = 1
and so det(RowOp(A)) = det(A).

Proof: We will look at several matrices with all the rows

except the i and j rows fixed. We will write

(
R
S

)
for the

matrix with R in the i th row, S in the j th row. We will apply
DET 2a and DET 2b.

det(RowOp(A)) = det

(
Ri(A) + kRj(A)

Rj(A)

)
=

det

(
Ri(A)
Rj(A)

)
+ k det

(
Rj(A)
Rj(A)

)
.

The second term k det

(
Rj(A)
Rj(A)

)
= 0 by the Identical Rows

Property. So

det(RowOp(A)) = det

(
Ri(A)
Rj(A)

)
= det(A).



Applying DET 4 repeatedly we get

DET 4d: If A is an n × n matrix with
B = RowOpk(RowOpk−1(. . . (RowOp1(A)) . . . )), then
det(B) = µkµk−1 . . . µ1det(A) where µ1, µ2, . . . are the
multipliers of RowOp1,ROwOp2, . . . .

Corollary 3.04: The n × n matrix A is invertible if and only if
det(A) 6= 0.

Proof: Choose the row operations so that B is in Reduced
Echelon Form. Let µ = µkµk−1 . . . µ1 6= 0.

If A is not invertible, and so the rank is less than n, then B has
a row of zeroes and so det(B) = 0. Since µ 6= 0, det(A) = 0.

If A is invertible, then B = In and so det(B) = 1. Hence,
det(A) = 1/µ.
�



In particular, this gives an efficient way of computing the
determinant. Use the Gaussian Algorithm to put A in Echelon
Form, keeping track of the multiplier for each operation.

If you hit a row of zeroes along the way, A is noninvertible and
det(A) = 0.

Otherwise, when you reach Echelon Form, the determinant is
the reciprocal of the product of the multipliers.

You need not go all the way to Reduced Echelon Form
because the final steps are all Type III operations with
multiplier equal to 1.

Let us look at Exercises 3.1/1e, 5bd, page 153.



Fredholm Alternative (final version): For A an m ×m
matrix row equivalent to Q in Reduced Echelon Form, so that
Q = UA and U−1Q = A with U a product of elementary
matrices. Either:

(i)[A is Nonsingular]

I r = RankA = m,

I Q = Im and so U−1 = A is a product of elementary
matrices and is invertible with inverse U .

I For each m × 1 column vector B the system AX = B has
the unique solution X = A−1B .

I For B any m × p matrix, AB = 0 implies B = A−10 = 0.

I The determinant det(A) is nonzero.

or else



(ii)[A is Singular]

I r = RankA < m,

I Q has m − r rows of zeroes, and A is not invertible.

I There exist m × 1 column vectors B such that the system
AX = B is inconsistent and so has no solution.

I If AX = B is consistent, for example if B = 0 and the
system is homogeneous, then there are infinitely many
solutions with m − r parameters.

I There exists B a nonzero m×m matrix such that AB = 0.

I The determinant det(A) equals zero.



DET 5: If A and B are n × n matrices, then
det(AB) = det(A)det(B).

Proof: We have seen that AB is invertible if and only if both
A and B are invertible. So AB is noninvertible, and so
det(AB) = 0 if and only if either A or B is noninvertible and
so det(A)det(B) = 0.

If A is invertible, then In is row equivalent to A and so we can
write

A = EkEk−1 . . .E1 = RowOpk(RowOpk−1(. . . (RowOp1(In)) . . . ))

and similarly

B = E ′`E
′
`−1 . . .E

′
1 = RowOp′`(RowOp

′
`−1(. . . (RowOp′1(In)) . . . ))

for some other list of row operations and associated
elementary matrices. So then:



AB = EkEk−1 . . .E1E
′
`E
′
`−1 . . .E

′
1 =

RowOpk(. . . (RowOp1(RowOp′`(. . . (RowOp
′
1(In)) . . . ))) . . . ).

By DET 4d, det(AB) is the product of the multipliers
µk . . . µ1µ

′
` . . . µ

′
1, while det(A) = µk . . . µ1 and

det(B) = µ′` . . . µ
′
1

Thus, det(AB) = det(A)det(B).
�



DET 6: If A is an n × n matrix, then det(AT ) = det(A).

Proof: A is invertible if and only if AT is invertible and so
det(A) = 0 implies det(AT ) = 0.

If E is the elementary matrix associated with the Type I
operation Ri ↔ Rj , then Eij = Eji = 1 and the only other
nonzero entries are Ekk = 1 for k 6= i , j . Hence, ET = E .

If E is the elementary matrix associated with the Type II
operation Ri → c Ri , then Eii = c and the only other nonzero
entries are Ekk = 1 for k 6= i . Hence, ET = E .

If E is the elementary matrix associated with the Type III
operation Ri → Ri + c Rj , then Eij = c and and the only other
nonzero entries are Ekk = 1 for all k . So ET is the elementary
matrix associated with the Type III operation Rj → Rj + c Ri .



So for any elementary matrix E , the transpose ET is an
elementary matrix associated with the same type and with the
same multiplier.

Now assume that A is invertible and so is a product of
elementary matrices A = Ek . . .E1 with determinant µk . . . µ1,
the product of the multipliers.

The transpose of a product is the product of the transposes
with the order reversed. So AT = ET

1 . . .ET
k with determinant

µ1 . . . µk = det(A).
�

Corollary 3.05: If A has a column of zeroes or two identical
columns, then det(A) = 0.

Proof: AT has a row of zeroes or two identical rows and so
det(A) = det(AT ) = 0.



DET 7: If A =

(
A1 X
0 A2

)
with A1 a u × u matrix, A2 a

v × v matrix and n = u + v (that is, A is in Block Triangular
Form), then det(A) = det(A1)det(A2).

Proof: Suppose Q1 = RowOpk(. . . (RowOp1(A1)) . . . ) with
multipliers µk , . . . , µ1 and with Q1 in Reduced Echelon Form,
and Q2 = RowOp′`(. . . (RowOp

′
1(A2)) . . . ) with multipliers

µ′`, . . . , µ
′
1 and with Q2 in Reduced Echelon Form. So Q1 and

Q2 are u × u and v × v matrices, respectively.

By Block multiplication, A =

(
Iu 0
0 A2

)(
A1 X
0 Iv

)
.

So det(A) = det(

(
Iu 0
0 A2

)
)det(

(
A1 X
0 Iv

)
).



Leaving the top part alone and using the same row operations
on the bottom, we have

(
Iu 0
0 Q2

)
= RowOp′`(. . . (RowOp

′
1(

(
Iu 0
0 A2

)
)) . . . ).

If Q2 has a row of zeroes, then so does

(
Iu 0
0 Q2

)
and so

det(A2) = 0 = det(

(
Iu 0
0 A2

)
).

If, instead, Q2 = Iv , then

(
Iu 0
0 Q2

)
= In and so

det(A2) = (µ′` . . . µ
′
1)−1 = det(

(
Iu 0
0 A2

)
).



For

(
A1 X
0 Iv

)
we move up and left using Type III operations

to eliminate all the nonzero entries of X . Since the multiplier
of a Type III operations equals 1 we have

det(

(
A1 X
0 Iv

)
) = det(

(
A1 0
0 Iv

)
).

As before leaving the bottom part alone and using the same
row operations on the top, we have

(
Q1 0
0 Iv

)
= RowOpk(. . . (RowOp1(

(
A1 0
0 Iv

)
)) . . . ).



If Q1 has a row of zeroes, then so does

(
Q1 0
0 Iv

)
and so

det(A1) = 0 = det(

(
A1 0
0 Iv

)
).

If, instead, Q1 = Iu, then

(
Q1 0
0 Iv

)
= In and so

det(A1) = (µk . . . µ1)−1 = det(

(
A1 0
0 Iv

)
).

Putting this all together we obtain

det(A) = det(

(
Iu 0
0 A2

)
)det(

(
A1 X
0 Iv

)
) = det(A1)det(A2.)

�



Although we have used it implicitly several times, we will later
need to use the Principle of Induction explicitly.

A proposition P(n) which depends on a positive integer n is
true for all n when

I P(1) is true.

I P(n) can be proved when P(k) is assumed to be true for
all k < n (Inductive Hypothesis).

That is, having checked the Initial Step, P(1), we are allowed
to assume what we are trying to prove but only for the earlier
levels.

Rather than being a circular argument, an inductive argument
spirals upward.



Corollary 3.06: If A is an upper triangular matrix, so that

aij = 0 when i > j , e.g. A =


a11 x x x
0 a22 x x
0 0 a33 x
· · · ·
· · · ·

, then

det(A) = a11a22a33 . . . .

Proof: We use induction on the size n of the matrix. The
result is obvious for a 1× 1 matrix.

In Block form A =

(
a11 X
0 A2

)
with A2 an (n − 1)× (n − 1)

upper triangular matrix.

By DET 7 det(A) = a11det(A1) and by the Inductive
Hypothesis det(A1) = a22a33 . . . .
We have proved the result for an n× n matrix, using the result
for an (n − 1)× (n − 1) matrix. So the result is true for all n
by induction.



Cofactor Expansion

For an n× n matrix A, the ij minor mij(A), or just Mij when A
is understood, is the determinant of the (n − 1)× (n − 1)
matrix Aij obtained by deleting the i th row and the j th column
of A. The minors mjj are called the principal minors of A.

The ij cofactor, or signed minor, is cij(A) = (−1)i+jmij(A).
Thus the signs alternate as we move along a row or column:

+ − + − · ·
− + − + · ·
+ − + − · ·
· · · · · ·
· · · · · ·


In particular, a + is always attached to a principal minor.

Notice that mij(A
T ) = mji(A) and so cij(A

T ) = cji(A).



DET 8: If A is an n × n matrix and i , j ≤ n, then we can
compute the determinant of A by expanding along row i or
along column j :

det(A) =
n∑

k=1

aikcik = ai1ci1 + ai2ci2 + · · ·+ aincin

=
n∑

k=1

akjckj = a1jc1j + a2jc2j + · · ·+ anjcnj .

Proof: Expanding along a row for A is the same as expanding
along a column of AT . Since det(A) = det(AT ) it will be
enough to check that if det ′(A) is defined by expanding along
a fixed column j , then det ′ satisfies the conditions DET 1,
DET 2 and DET 3 as these conditions characterize the
determinant. We are assuming that the (n − 1)× (n − 1)
determinant satisfies these conditions.

We will just sketch the arguments.



DET 1: If A = In then akj = 0 except when k = j and ajj = 1.

Observe that Ajj = In−1 and so principal minor
mjj = det(In−1) = 1.

Because it is a principal minor its sign is positive.

Hence, det ′(In) = ajjcjj = 1.



DET 2a: Suppose R`(B) = cR`(A) and Rk(B) = Rk(A) for all
k 6= `.

It follows that A`j = B`j which implies c`j(A) = c`j(B) with
b`j = c a`j .

If k 6= `, then bkj = akj , but one row of Bkj is c times the
corresponding row of Akj . This implies that ckj(B) = c ckj(A).

So a factor of c pulls out of each term of the column
expansion for B .



DET 2b: Similarly, suppose R`(C ) = R`(A) + R`(B) and
Rk(C ) = Rk(A) = Rk(B) for all k 6= `.

It follows that C`j = A`j = B`j which implies
c`j(C ) = c`j(A) = c`j(B) with c`j = a`j + b`j .

If k 6= `, then ckj = akj = bkj , but one row of Ckj is the sum of
the corresponding rows of Akj and Bkj . This implies that
ckj(C ) = ckj(A) + ckj(B).

So the column expansion for C splits into the sum of the
column expansion of A and that of B .



DET 3 is actually the trickiest property to check. It is actually
sufficient to assume that the two rows being switched are
adjacent. To show this it suffices to show that if
Ri(A) = Ri+1(A), then det ′(A) = 0.

If k 6= i or i + 1, then two rows of Akj are equal and so
ckj = 0.

Since row i equals row i + 1, we have aij = a(i+1)j and
Aij = A(i+1)j which implies that for the minors mij = m(i+1)j

On the other hand, the signs (−1)i+j and (−1)i+1+j are
opposite. This means that cij = −c(i+1)j .

The nonzero terms in the column expansion are aijcij and
a(i+1)jc(i+1)j and these sum to 0.
�



If we write Co(A) for the cofactor matrix of A, then expansion
along row i says that det(A) is the dot product of row i of
Co(A) with row i of A and similarly for expansion along
column i .

Thus, for an n × n matrix A and 1 ≤ i ≤ n

det(A) = Rowi(Co(A)) · Rowi(A)

= Coli(Co(A)) · Coli(A).
(3.1)

From this we obtain



DETERMINANT TRICK For A an n × n matrix and Z an
n × 1 column vector, if B is the n × n matrix obtained by
replacing column i of A by the column Z and leaving the rest
alone, then

det(B) = Coli(Co(A)) · Z . (3.2)

Proof: Forming the minors for column i of A we don’t use the
entries of Coli(A). So Coli(Co(A)) = Coli(Co(B)).

Meanwhile Z = Coli(B). Therefore,

Coli(Co(A)) · Z = Coli(Co(B)) · Coli(B) = det(B).



Corollary: If you expand using the entries of a row with the
cofactors of a different row, or the entries of a column with
the cofactors of a different column, then you get 0. That is, if
i 6= j , then

0 =
n∑

k=1

ajkcik = aj1ci1 + aj2ci2 + · · ·+ ajncin

=
n∑

k=1

akjcki = a1jc1i + a2jc2i + · · ·+ anjcni .

or, equivalently,

0 = Rowi(Co(A)) · Rowj(A)

= Coli(Co(A)) · Colj(A).
(3.3)



Proof: Look at the column case.

Let Z = Colj(A) and let B be the matrix obtained from A by
replacing column i by Z .

Because B has two identical columns, det(B) = 0 and so by
the DETERMINANT TRICK

0 = Coli(Co(A)) · Z = Coli(Co(A)) · Colj(A).

For the row case, we use the transpose.



Now for an n × n matrix A define the adjugate adj(A) to be
the transpose of the cofactor matrix so that
adj(A)ij = cji(A).

We have already seen this in the 2× 2 case. If A =

(
a b
c d

)
,

then adj(A) =

(
d −b
−c a

)
. We saw in that case that

A adj(A) = det(A)I2. The analogous result is true in general.

DET 9: If A is an n × n matrix, then
A adj(A) = det(A)In = adj(A) A. in particular, if
det(A) 6= 0, then A−1 = 1

det(A)
adj(A).



Proof: For the ij entry of adj(A)A, we have

(adj(A)A)ij = Rowi(adj(A)) · Colj(A)

= Coli(Co(A)) · Colj(A).

If i = j , then this is det(A) by (3.1).

If i 6= j , then this is 0 by (3.3).

That is, each of the main diagonal entries is det(A) and the
off-diagonal entries are all 0.



When n > 3 the cofactor method is usually an inefficient way
to compute the determinant as compared with the method
which uses the Gaussian algorithm. However, it is useful in
various constructions. For example:

Cramer’s Rule: For A a nonsingular n × n matrix and B an
n × 1 column vector, let Ai be the matrix obtained by
replacing the i th column of A by the column B .

The unique solution X = A−1B of the system AX = B is
given by

xi = det(Ai)÷ det(A).



Proof: X = A−1B = 1
det(A)

adj(A)B .

So

det(A)xi = Rowi(adj(A)) · B
= Coli(Co(A)) · B = det(Ai)

by the DETERMINANT TRICK.

Let us look at Exercises 3.2/ 4, 10f, 27, pages 167, 168.


	Vectors and Matrices
	Matrix Addition and Scalar Multiplication
	Matrix Multiplication

	Systems of Equations and Elementary Matrices
	Elementary Matrices
	Linear Transformations

	Determinants
	Cofactor Expansion


