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Vector Spaces - Introduction

You should recall the definition of a vector as an object with
magnitude and direction (as opposed to a scalar with
magnitude alone). This was devised as a means of
representing forces and velocities which exhibit these vector
characteristics. The behavior of these physical phenomena
leads to a geometric notion of addition of vectors (the
“parallelogram law”) as well as multiplication by scalars - real
numbers. By using coordinates one discovers important
properties of these operations.



Addition Properties

(v + w) + z = v + ( w + z).

v + w = w + v.

v + 0 = v.

v + −v = 0.

(4.1)

The first two of these, the Associative and Commutative Laws,
allow us to rearrange the order of addition and to be sloppy
about parentheses just as we are with numbers. We use them
without thinking about them. The third says that the zero
vector behaves the way the zero number does: adding it leaves
the vector unchanged. The last says that every vector has an
“additive inverse” which cancels it. The subtraction w − v
means w + (−v).



Scalar Multiplication Properties

a(bv) = (ab)v.

1v = v.
(4.2)

The first of these looks like the Associative Law but it isn’t. It
relates multiplication between numbers and scalar
multiplication. The second says that multiplication by 1 leaves
the vector unchanged the way the addition with 0 does.

Distributive Properties

a(v + w) = av + aw.

(a + b)v = av + bv.
(4.3)

These link addition and scalar multiplication.



In Linear Algebra we abstract from the original physical
examples. Now a vector is just something in a vector space. A
vector space is a set V of objects which are called vectors.
What is special about a vector space is that it carries a
definition of addition between vectors and a definition of
multiplication of a vector by a scalar. For us a scalar is a real
number, or possibly a complex number. We discard the
original geometric picture and keep just the properties given
above. These become the axioms of a vector space.

In particular, the zero vector 0 is the vector which “zeroes”.
That is, it satisfies the property given by the axiom x + 0 = x
for all x ∈ V . There is only one zero vector. In fact, suppose
that v + q = v for some vector v. Then q is a candidate for
the zero vector. We show that q = 0 by using the axioms.



1- q + v = v + q = v. (Commutative Law)

2- q + (v + −v) = (q + v) +−v = v + −v.
(Associative Law)

3- v + −v = 0. (Cancellation)

5- So q + 0 = 0.

5- q = q + 0. (Zero Property)

6- Therefore q = q + 0 = 0.



This illustrates the use of the axioms in detail. In practise, we
use the axioms unconsciously just as we do with numbers.
From v + q = v, we add −v to both sides to cancel v, getting
0 + q = 0. Since 0 + q = q, it follows that q = 0. We will
call this result The Uniqueness of 0.

There is similarly The Uniqueness of −x. Suppose p cancels v.
That is, v + p = 0. Add −v to both sides to get 0 + p = −v.
Since p = 0 + p, we have p = −v.



From the it is possible to derive various other simple, but
important properties. (Theorem 6.1.3)

av = 0 ⇐⇒ a = 0 or v = 0.

(−1)v = −v.
(4.4)

Proof: 1v+ 0v = (1 + 0)v = 1v. By Uniqueness of 0, 0v = 0.

a0 + a0 = a(0 + 0) = a0. By Uniqueness of 0, a0 = 0.

If av = 0 and a 6= 0, then v = 1v = (1/a)av = (1/a)0 = 0.

0 = 0v = (1 + (−1))v = 1v + (−1)v = v + (−1)v. By
Uniqueness of −x, (−1)v = −v.

v + x = w ⇐⇒ x = w − v.

So v + x1 = v + x2 =⇒ x1 = x2.
(4.5)



Fundamental Principle of Linear Algebra

A = B ⇐⇒ A − B = 0. (4.6)

The most important examples of vector spaces are:

I Mmn the set of m × n matrices with matrix addition and
scalar multiplication. In particular, Rn thought of as
column vectors or row vectors.

I The set of all real-valued functions on a set S with
(f + g)(s) =def f (s) + g(s) and (af )(s) =def a(f (s)).

Let us look at Exercises 6.1/3, 8, page 335.



Subspaces and Linear Combinations

Because any vector space contains its zero vector, it is never
an empty set.

A subspace W of a vector space V is a nonempty subset
which is closed under vector addition and scalar multiplication.
That is, v,w ∈ W imply v + w ∈ W and av ∈ W for every
scalar a. In particular, 0 = 0v ∈ W and if v ∈ W then
−v = (−1)v ∈ W .

So a subspace W is itself a vector space with the other axioms
for W following from the fact that they are true for V .

To check whether W is a subspace, always look first to see if
0 ∈ W .

The intersection of any collection of subspaces is a subspace,
but the union of two subspaces is usually not a subspace.



Linear Combinations

For a list {v1, v2, . . . , vk} of vectors in V and a list
{c1, c2, . . . , ck} of scalars,

Σk
i=1 civi = c1v1 + c2v2 + . . . + ckvk

is the linear combination of {v1, v2, . . . , vk} with coefficients
{c1, c2, . . . , ck}.

From the axioms we can “clear parentheses” to get:

a(c1v1 + c2v2 + . . . + ckvk) =

ac1v1 + ac2v2 + · · ·+ ackvk .
(4.7)

The scalar multiple of a linear combination for a list is a linear
combination for the same list.



We can add linear combinations to get:

c1v1 + c2v2 + . . . + ckvk
+ d1v1 + d2v2 + . . . + dkvk

(c1 + d1)v1 + (c2 + d2)v2 + · · ·+ (ck + dk)vk .

(4.8)

The sum of two linear combinations for a list is a linear
combination for the same list.

Notice that for lists {v1, . . . , vk} and {w1, . . . ,w`}.

c1v1+c2v2+· · ·+ckvk = c1v1+c2v2+· · ·+ckvk+0w1+. . . 0w`

A linear combination for a list is a linear combination for any
larger list. Thus, the sum of linear combinations on two
different lists is a linear combination on the combined list.



Let S be a set of vectors in V . A linear combination on S is a
linear combination for a list {v1, ..., vk} of vectors in V . is a
vector v = Σn

i=1 civi . By convention, we regard 0 to be the
linear combination on the empty list of vectors.

Define span(S) to be the set of all linear combinations on S .
That is, v ∈ span(S) if and only if v = Σn

i=1 civi for some list
{v1, ..., vk} of vectors in V and list {c1, ..., ck} of scalars.

By the above convention span(∅) = {0}.



Theorem 4.01: For S a subset of a vector space V .

(a) If v ∈ S , then v is a linear combination on S . That is,
S ⊂ span(S).

(b) If S is contained in a subspace W then every linear
combination on S is contained in W . That is,
span(S) ⊂ W .

(c) span(S) is a subspace.

(d) span(S) is the intersection of all the subspaces which
contain S . That is,

span(S) =
⋂
{W : S ⊂ W and W is a subspace of V }.



Proof: (a) v = 1v and so v is a linear combination for the list
{v}.

(b) Obvious since W is closed under addition and scalar
multiplication.

(c) We saw above that a scalar multiple of a linear
combination for a list is a linear combination for the same list
and the sum of linear combinations for two lists is a linear
combination for the combined list.

(d) From (b) span(S) is contained in the intersection. Since
by (c) it is itself a subspace it is one of the W ’s and so
contains the intersection.
�



Corollary 4.02: (i) If W is a subspace and S ⊂ W , then
span(S) ⊂ W .

(ii) If S ⊂ T , then span(S) ⊂ span(T ).

(iii) If T ⊂ span(S), then span(S) = span(S ∪ T ).

Proof: (i) This is (b) of the Theorem.

(ii)By (a) S ⊂ T ⊂ span(T ) and by (c) span(T ) is a
subspace. So span(S) ⊂ span(T ) by (i).

(iii) S ⊂ S ∪ T and so span(S) ⊂ span(S ∪ T ) by (ii).
By assumption and (a), S ∪ T ⊂ span(S) and by (c) span(S)
is a subspace.
So, span(S ∪ T ) ⊂ span(S) by (i).
�



We say that S spans V , or just S spans, when span(S) is the
whole space, V . That is, every vector in V is a linear
combination on S .

BE ABLE TO DEFINE: (1) W is a subspace of V .

(2) v is linear combination on S = {v1, ..., vn}.

(3) The span of S .

(4) S spans the vector space V .

Let us look at Exercises 6.2/ 2df, 3dg, pages 241, 242.



We can regard an m × n matrix A as a list of n columns each
of length m: A = (C1(A) C2(A) . . . Cn(A)) or just
(C1 C2 . . . Cn) For X an n × 1 matrix
AX = x1C1 + x2C2 + . . . xnCn. That is, AX is the linear
combination of the columns of A with coefficients given by X .

The Column Space of A, denoted COL(A) is the span of the
columns of A so that

COL(A) = span({C1, . . . ,Cn}) = {AX : X ∈ Rn} (4.9)

is a subspace of Rm.

Thus, B ∈ COL(A) meaning B can be written as a linear
combination of the columns of A if and only if the system
AX = B has a solution, i.e. if and only if it is consistent.



Theorem 4.03: Let A be an m × n matrix with columns
C1, . . .Cn ∈ Rm. Assume that Q in Reduced Echelon Form is
row equivalent to A. The following conditions are equivalent.

(i) COL(A) = Rm.

(ii) The set of columns of A spans Rm.

(iii) For every B ∈ Rm, there exists X ∈ Rn such that
AX = B .

(iv) For every B ∈ Rm, the system AX = B is consistent.

(v) The rank of A equals m.

(vi) There is a leading 1 in every row of Q.



Proof: It is clear that (i), (ii), (iii) and (iv) are all different
ways of saying the same thing, namely that for any vector B in
Rm there is a list of coefficients X so that
B = x1C1 + x2C2 + . . . xnCn.

Since there is at most one leading 1 in any row of Q, it is clear
that (v) and (vi) are saying the same thing.

We can write Q = UA where U is an invertible n × n matrix,
the product of the elementary matrices for the operations
which move A to Q.

Now assume that there is a leading 1 in every row of Q. For
any B , we put the augmented matrix (A|B) in Reduced
Echelon Form by multiplying by U to get (Q|UB). Since there
is a leading 1 in every row of Q there is no leading 1 in the
last column and the system is consistent. That is, (vi) implies
(iv).

On the other hand, if Q has a row of zeroes, then (Q|em) is
inconsistent and so (A|U−1em) is inconsistent. So not (vi)
implies not (iv).
�



Let us look at Exercises 5.1/ 2a, 3a, page 267



Linear Independence

A list S = {v1, . . . , vn} is (not are) linearly independent (= li)
if c1v1 + ... + cnvn = 0 only if c1 = c2... = cn = 0. That is,
the only way to get 0 as a linear combination is by using the
zero coefficients.

By the Fundamental Principle: The list S is li if and only if we
can equate coefficients. That is:

c1v1 + · · ·+ cnvn = a1v1 + · · ·+ anvn
=⇒ c1 = a1, . . . , cn = an.

(4.10)

By convention, we regard the empty list as linearly
independent.



It is important to think of {v1, . . . , vn} as a list and not a set.
The order in which we write the vectors does not matter, but
vectors may be repeated. For example, the list consisting of a
single vector {w} is li if and only if w 6= 0. (Why?)

On the other hand, If in the list, v1 = v2 then the list is not li
because 1v1 + (−1)v2 + 0v3 + · · ·+ 0vn = 0.

Notice that if a set spans, then any larger set spans, while if a
list is li then any list contained in it is li.

That is, for S ⊂ T :

I If S spans, then T spans.

I If T is li, then S is li.



When S = {v1, . . . , vn} is not linearly independent, it is called
linearly dependent (= ld). Thus, S is ld when the zero vector
can be written as a non-trivial linear combination. There exists
a list of coefficients not all zero such that
c1v1 + · · ·+ cnvn = 0.

The list S is ld if one vector on the list is a linear combination
of the others. For example, if vn = c1v1 + · · ·+ cn−1vn−1 then
0 = c1v1 + · · ·+ cn−1vn−1 − vn and one of the coefficients is
certainly not zero. (Which one and what is it?)

Conversely,

Theorem 4.04: For the lists S = {v1, . . . , vn} and
T = {vn+1, . . . , vm}, assume that S is li and
S ∪ T = {v1, . . . , vn, vn+1, . . . , vm} ld. There exists a vector
vi in T which is a linear combination of the remaining vectors
of S ∪ T . In addition, span(S ∪ T ) = span(S ∪ T \ {vi}).



Proof: Assume c1v1 + · · ·+ cmvm = 0 and not all the ci ’s
equal 0.

We can solve for vi if ci is not zero. For example, if cm 6= 0,
then vm = −(1/cm)(c1v1 + · · ·+ cm−1vm−1).

If all of cn+1 = · · · = cm = 0, then c1v1 + · · ·+ cnvn = 0
would imply c1 = · · · = cn = 0 because S is li.

So one of the ci ’s with n < i ≤ m is nonzero and we can solve
for that vi .

Thus {vi} ⊂ span(S ∪ T \ {vi}) and so
span(S ∪ T ) = span(S ∪ T \ {vi}) by (iii) of the Corollary 02.
�



Theorem 4.05: Assume that the list S = {v1, . . . , vn} is li and
T = {w1, . . . ,wm} spans V . We can renumber T so that
B = {v1, . . . , vn,wn+1, . . . ,wm} spans V . That is, we can
replace n of the vectors in T by the vectors of S and still have
a spanning set. In particular, m ≥ n.

Proof Suppose that Bk = {v1, . . . , vk ,wk+1, . . . ,wm} spans V
for some k with 0 ≤ k < n. Here B0 is just T .

Because Bk spans, vk+1 is a linear combination of the vectors
of Bk and so

B ′k = {v1, . . . , vk , vk+1,wk+1, . . . ,wm} = Bk ∪ {vk+1}

is linearly dependent and of course it still spans.



Now we apply Theorem 04 which implies that one of the
vectors wk+1, . . . ,wm is a linear combination of the vectors
B ′k . By renumbering, we can assume that it is wk+1 which lies
in span(Bk+1) with

Bk+1 = {v1, . . . , vk , vk+1,wk+2, . . . ,wm} = B ′k \ {wk+1}.

By Theorem 04 span(Bk+1) = span(B ′k) = V .

Repeat the process until we get to Bn = B . Technically, this is
a proof by induction.
�



Theorem 4.06: Let A be an m × n matrix with columns
C1, . . .Cn ∈ Rm. Assume that Q in Reduced Echelon Form is
row equivalent to A. The following conditions are equivalent.

(i) The list {C1, . . .Cn} of the columns of A is linearly
independent.

(ii) The homogeneous system AX = 0 has only the trivial
solution X = 0.

(iii) For every B ∈ Rm, there exists at most one X ∈ Rn such
that AX = B .

(iv) The rank r of A equals n.

(v) There is a leading 1 in every column of Q.



Proof: (i) and (ii) are saying the same thing, and (ii) says that
for B = 0 the system has only one solution. Hence, (iii)
implies (ii). On the other hand if AX1 = B = AX2 with
X1 6= X2, then X = X1 − X2 is a nontrivial solution of
AX = 0.

Since there is at most one leading 1 in every column, (iv) and
(v) are saying the same thing.

By the Gaussian algorithm, the solutions of AX = 0 are the
same as those of QX = 0.

The solution X = 0 is unique when every variable is a fixed
variable, that is, n = r .

If r < n, then there are free variables and AX = 0 has
infinitely many solutions.



BE ABLE TO DEFINE: S = {v1, ..., vn} is li or ld.

If in the list S = {v1, ..., vn} some vi = 0, then the list is ld.
(Why?)

If S = {v1, v2} then the pair is ld if and only if one of the two
vectors is a scalar multiple of the other. (Why?)

Let us look at Exercises 5.2/1a,8 pages 278, 279, and
6.3/ 1ac, page 349.



Basis and Dimension

A list B of vectors in V is a basis if it spans and is li.

We call a vector space finite dimensional when it admits a
finite spanning set.



Theorem 5.01 Dimension Theorem: If the list
S = {v1, . . . , vn} is li in V and T = {w1, . . . ,wm} spans V ,
then m ≥ n. In particular, if V is finite dimensional, then any
li list is finite.

If both S and T are bases, i.e. both are li lists which span V ,
then m = n.

Proof: We saw in Theorem 4.05 that m ≥ n.

If V has a spanning set of size m, then since every li list has
size at most m, there can’t be an infinite li list,

If both are bases then by Theorem 4.05 again m ≥ n and
n ≥ m.
�



For a finite dimensional vector space, the number of vectors in
any basis is called its dimension. For a finite set S we will
write #S for the number of elements in it. So V has
dimension n when #B = n for any basis B of V .

The empty set is li by convention and span(∅) = {0}. Hence,
∅ is a basis for {0}. and so the dimension of {0} is 0.

If v is a nonzero vector in V , then Rv = {cv : c ∈ R} is a
subspace of V with basis {v}. Hence, Rv has dimension 1.



Theorem 5.02 (Between Theorem): For the lists
S = {v1, . . . , vn} and T = {vn+1, . . . , vm}, assume that S is
li and S ∪ T = {v1, . . . , vn, vn+1, . . . , vm} spans.

There exists a basis B with S ⊂ B ⊂ S ∪T . That is, the basis
consists of all of the vectors of S together with some (maybe
none, maybe all) of the vectors of T .

Proof: Look first, at two extreme cases.

If S spans then since it is li, it is a basis. Use B = S , using
none of the vectors of T . For example, if m = 0 so that there
are no vectors in T , then S = S ∪ T spans and B = S is a
basis.

If S ∪ T is li then since it spans, it is a basis. Use B = S ∪ T ,
using all of the vectors of T .



Now if S ∪T is not li, then by Theeorem 04 one of the vectors
of T can be written as a linear combination of the remaining
vectors of S ∪ T . By renumbering we can suppose this is true
of the last vector wm. Call T ′ = = {w1, ...,wm−1}. So that
last vector wm ∈ span(S ∪ T ′). As mentioned in Theorem 04,
(iii) of the Corollary 02 implies that
span(S ∪ T ′) = span(S ∪ T ). But S ∪ T spans V and so
S ∪ T ′ spans V .

We continue, doing a loop. If S ∪ T ′ is li then we are done
with B = S ∪ T ′. If S ∪ T ′ is ld we can remove some vector
from T ′ and still have a spanning set.

Eventually, we get to a situation where together the set of
remaining vectors is li and so we have the basis B . If not
before this will happen when we have removed all of the
vectors in T .



Technically, we are using mathematical induction on m.
Remember that for the initial case m = 0 is easy. In that case,
B = S is a basis.

Assume the result for m = k and suppose that m = k + 1.

We saw that if S ∪ T is li, then B = S ∪ T is a basis, and if
S ∪ T is ld, we can remove a vector and still have the
spanning set S ∪ T ′ but now with m for T ′ being k . The
induction hypothesis implies that there is a basis B with
S ⊂ B ⊂ S ∪ T ′ ⊂ S ∪ T .

Result then follows from the Principle of Mathematical
Induction.
�



Corollary 5.03: Any finite spanning set for a vector space
contains a basis.

Any linearly independent list for a finite dimensional vector
space extends to a basis.

Proof: If T spans apply Theorem 08 with S = ∅.

If S is a li list and T is any finite spanning set, then S too is
finite by the Dimension Theorem. Apply Theorem 08 with S
and T .
�
Corollary 5.04: If W is a proper subspace of a finite
dimensional space V , i.e. W 6= V , then dimW < dimV .

Proof: If B is a basis for W , then B is an li list of vectors in V
which does not span V because it spans W . By Corollary 5.03
we can extend B to a basis B ′ of V and B ′ contains more
vectors than just those in B . So
dimW = #B < #B ′ = dimV .
�



Theorem 5.05: Let S be a list of vectors in a vector space V
of dimension n.

(a) If S is li then #S ≤ n with equality if and only if S is a
basis.

(b) If S spans then #S ≥ n with equality if and only if S is a
basis.

(c) Any two of the following conditions implies the third.

(i) #S = n.

(ii) S is li.

(iii) S spans.



Proof:(a) Use Corollary 5.03 to extend S to a basis B .
#S ≤ #B = n.

(b) Use Corollary 5.03 to shrink S to a basis B .
#S ≥ #B = n.

In either case, if #S = n = #B then S = B and so S is a
basis.

(c) If S is li and spans then it is a basis and so has size n. For
the other directions apply (a) and (b).
�



Coordinates

We began our serious study of linear algebra by introducing a
new meaning for the term vector. Instead of something with
magnitude and direction, a vector is an element of a vector
space.

Now we alter the meaning of the term coordinates.

If you were asked: What are the coordinates of the vector
(3, 0,−1, 5) ∈ R4? You would have given the obvious answer:
3, 0,−1, 5.

Now the correct response, is to ask another question:
Coordinates with respect to what basis?



If B = {v1, ..., vn} is a basis for V (so that V has dimension
n) and v is a vector in V , then there is a unique list of
numbers c1, ..., cn such that v = c1v1 + ... + cnvn.

[How do you know that ci ’s exist? How do you know they are
unique?]

The numbers {c1, ..., cn} are the coordinates of v with respect
to the basis B .

The vector

[v]B =


c1
c2
·
·
cn

 ∈ Rn (5.1)

is the coordinate vector of v with respect to B .



In many cases, a vector space is described using a linear list of
parameters. For example,

M22 = {A =

(
a b
c d

)
: a, b, c , d ∈ R }

Here there are four parameters, four free variables each of
which can take on an arbitrary real value independent of the
choice for the others. We think of the coordinates of A as
being a, b, c , d . In such a case there is an associated standard
basis. Its elements are each obtained by setting one the
parameters equal to 1 and the others equal to 0.

S = {Ea =

(
1 0
0 0

)
, Eb =

(
0 1
0 0

)
,

Ec =

(
0 0
1 0

)
,Ed =

(
0 0
0 1

)
}.

(5.2)



Clearly, A = aEa + bEb + cEc + dEd .

Since two matrices are equal if and only if the corresponding
entries are equal, we can equate coefficients and so S is an li
list. It clearly spans and so is a basis for M22

From (5.2) we have

[A]S =


a
b
c
d

 .

If you choose a different order for the parameters, e.g.
a, c , b, d , then the ordering of the list in S and so the order of
the entries in [A]S would be changed. Any choice of order is
ok, but having chosen one, it should be kept consistently.

In general, the space Mmn of m × n matrices has dimension
mn which is the number of entries and so is the number of
elements of the standard basis.



For Rn itself with a typical vector

x =


x1
x2
·
·
xn


the standard basis is

S = {e1 =


1
0
·
·
0

 , e2 =


0
1
·
·
0

 , . . . , en =


0
0
·
·
1

} (5.3)

and x is its own coordinate vector with respect to the standard
basis S .

The dimension of Rn is n.



Let Pn be the space polynomials of degree at most n. So a
typical polynomial is given by p(t) = a0 + a1t + ... + ant

n.
The parameters are the coefficients (a0, ..., an).

If p(t) = q(t) = b0 + b1t + ... + bnt
n, then we can equate

coefficients to get a0 = b0, . . . , an = bn.

To see this, set t = 0 to get a0 = b0, then takes the derivative
and set t = 0 to get a1 = b1, and continue until at the nth

derivative we get n!an = n!bn.



Treating the coefficients as parameters we get the standard
basis S = {1, t, ..., tn} and

[p(t)]S =


a0
a1
·
·
an


There are n + 1 vectors in this standard basis and so the
dimension of Pn is n + 1.



For a fixed m × n matrix, the solution space of the
homogeneous system AX = 0 is a subset of Rn called the
nullspace of A, denoted Null(A). Observe that AX1 = 0 and
AX2 = 0 implies A(X1 + X2) = 0 and A(cX1) = 0. Thus,
Null(A) is a subspace of Rn. Notice that if B 6= 0, then the
solution set of AX = B in Rn is not a subspace.

Recall how we solve the system AX = B .



Let Q be the matrix in Reduced Row Echelon Form which is
row equivalent to A, so that Q = UA with U the invertible
m ×m matrix which is the product of the elementary matrices
for the row operations that we used to get from A to Q.

The vector Y is in the column space of A, i.e. it is a linear
combination of the columns, if and only if the system AX = Y
is consistent. This is the same as when QX = UY is
consistent because these two systems have the same solutions.
This in turn means that any row of zeroes for Q extends to a
0 in the corresponding row of UY .

Thus, the augmented matric (Q|UY ) is in Reduced Echelon
Form and all of the leading 1’s occur in the columns of Q.
There are r of these where r is the rank of A. These r
columns correspond to the fixed variables or pivot variables
The remaining n − r columns of Q correspond to free
variables. That is, each is a parameter whose value can be
chosen arbitrarily and independent of the others.



Theorem 5.06: Let A be an m × n matrix of rank r , with
Q = UA the matrix row equivalent to A which is in Reduced
Echelon Form using the invertible m ×m matrix U .

Let B = {Ci1(A),Ci2(A), . . . ,Cir (A)} be the list of the
columns of A which correspond to the fixed variables. That is,
these are the columns of A in which the leading 1 occur in Q
after the row operations. The list B is a basis for the column
space Col(A). Thus, the dimension of Col(A) is the rank r .

For the nullspace of A the free variables are parameters for the
general solution of AX = 0. The n − r parameters provide a
standard basis for Null(A) and so the dimension of Null(A) is
n − r .



Proof: For any Y ∈ Col(A) there is a unique solution of the
system AX = Y with all of the parameters chosen to be 0.
That is, every coefficient except those on
Ci1(A),Ci2(A), . . . ,Cir (A) is 0. This yields any Y as a linear
combination of the columns in B . That is, B spans the
column space. Uniqueness implies that we can equate
coefficients when comparing linear combinations of the
columns in B . This in turn means that B is an li list. Since B
is a basis for Col(A), the dimension equals r .

In particular, the trivial solution with all xi ’s equal to 0 is the
only solution of AX = 0 with all the parameters chosen to be
0.

The list of parameters is the list of coordinates of an element
of Null(A) with respect to the associated standard basis.
There are n − r parameters and so there are n − r elements of
the associated basis.
�



Consider the example:

A =

(
1 2 3
1 2 3

)
, Q =

(
1 2 3
0 0 0

)
.

The column space is R
(

1
1

)
with basis {

(
1
1

)
}.

The general solution of AX = 0 is given by
x3 = r , x2 = s, x1 = −2s − 3r . So the basis of the nullspace is

{Xs =

−2
1
0

 , Xr =

−3
0
1

}
Notice that Col(A) is a different subspace from Col(Q)
although they both have the same dimension, namely their
common rank.



We have just seen that even if A is row equivalent to Q, the
column spaces may differ. They usually do. On the other
hand, the row space of A, the span of the rows of A in Rn,
denoted Row(A), is always the same as Row(Q).

Observe that if you rearrange the order of the list of vectors,
the span, the set of linear combinations is unchanged. The
same is true if you replace a vector on the list by a nonzero
multiple of it. Finally, if you replace vi by vi + cvj for j 6= i ,
the span does not change. For example,

c1(v1 + cv2) + c2v2 + . . . cnvn = c1v1 + (c1c + c2)v2 + . . . cnvn,

d1v1 + d2v2 + . . . cnvn = d1(v1 + cv2) + (d2 − d1c)v2 + . . . cnvn.



Theorem 5.07: Let A be an m× n matrix of rank r , with Q the
matrix row equivalent to A which is in Reduced Echelon Form.
The row spaces Row(A) and Row(Q) are the same. The list
of nonzero rows in Q is a basis for this common row space. As
there are r such rows, the dimension of Row(A) is the rank r .

Proof: We have just seen that the row operations do not
change the row space and so Row(A) = Row(Q). The
nonzero rows {R1(Q),R2(Q), . . . ,Rr (Q)} clearly span the row
space.

Suppose the leading 1 occur in columns i1, . . . , ir and so in
position (1, i1), (2, i2), . . . , (r , ir ). Recall that the leading 1 is
the only nonzero entry in its column since Q is in Reduced
Echelon Form. It therefore follows that the linear combination
Z = c1R1 + c2R2 + . . . crRr equals c` in the ` place. Hence,
Z = 0 implies all the c`’s equal 0. That is, {R1, . . . ,Rr} is an
li list and so is a basis for Row(A) = Row(Q).
�



Theorem 5.08: For A be an n × n matrix, the following are
equivalent.

(i) A is invertible.

(ii) The columns of A form an li list.

(iii) The dimension of the column space Col(A) is n.

(iv) The rows of A form an li list.

(v) The dimension of the row space Row(A) is n.

(vi) The null space Null(A) equals {0}.



Proof: From the Fredholm Alternative, A is invertible if and
only if the rank r = n.

By Theorem 5.06, the number of li columns equals the rank r
and this is the dimension of Col(A). So both (ii) and (iii) are
equivalent to r = n.

By Theorem 5.07, the number of li rows equals the rank r and
this is the dimension of Row(A). So both (iv) and (v) are
equivalent to r = n.

By Theorem 5.06 again the dimension of Null(A) is n − r .
Null(A) = {0} if and only if dimNull(A) = 0 and so if and
only if r = n.
�



BE ABLE TO DEFINE:(1) B is a basis for V .
(2) The dimension of V .
(3) The coordinates of a vector v of V with respect to a basis
for V .

For an m × n matrix A be able to get a basis for
Col(A),Null(A) and Row(A).

Let us look at
Exercises 6.3/ 5b, 6c, 10b, 24, pages 350, 351.
6.4/ 2b, 3a pages 358, 359.



Linear Transformations

Earlier we define a linear transformation TA : Rn → Rm

defined by multiplying the m × n matrix A.

In general, a linear transformation or linear map is a function
T : V → W between the vector spaces V and W . That is,
the inputs and outputs are vectors, and T satisfies linearity,
which is also called the superposition property:

T (v1 + v2) = T (v1) + T (v2) and T (av) = aT (v).
(6.1)

In particular, T (0) = T (00) = 0T (0) = 0, and
T (−v) = T ((−1)v) = (−1)T (v) = −T (v).
It follows that T relates linear combinations:

T (c1v1 + c2v2 +. . . ckvk) = c1T (v1) + c2T (v2) +. . . ckL(vk).
(6.2)



This property of linearity is very special. It is a standard
algebra mistake to apply it to functions like the square root
function and sin and cos etc. for which it does not hold. On
the other hand, these should be familiar properties from
calculus. The operator D associating to a differentiable
function f its derivative Df is a most important example of a
linear operator.

From a linear map we get an important examples of subspaces.



For a linear map T : V → W , the set of vectors
{v ∈ V : T (v) = 0} solution space of the homogeneous
equation, is a subspace of V called the kernel of T , Ker(T ).
If r is not 0 then the solution space of T (v) = r is not a
subspace. For example, it does not contain 0.

For a linear map T : V → W , the set of vectors {w ∈ W : for
some v ∈ V , T (v) = w} is called the image of L, denoted
Im(T ).

Check that Ker(T ) ⊂ V and Im(T ) ⊂ W are subspaces.

For the linear map TA : Rn → Rm associated with the m × n
matrix A, Ker(TA) = Null(A) and Im(TA) = Col(A).



Theorem 6.01: (a) If T : V → W and S : W → U are linear
maps, then the composition S ◦ T : V → U defined by
S ◦ T (v) = S(T (v)) is a linear map.

(b) A linear map T : V → W is one-to-one if and only if
Ker(T ) = {0}.

(c) A linear map T : V → W is onto if and only if
Im(T ) = W .

(d) If a linear map T : V → W is one-to-one and onto, then
the inverse map T−1 : W → V defined by

T−1(w) = v ⇔ T (v) = w (6.3)

is a linear map.

A one-to-one, onto linear map is called a linear isomorphism.



Proof: (a)
S(T (cv1 +v2) = S(cT (v1)+T (v2)) = cS(T (v1))+S(T (v2)).

(b) T (0) = 0 and so if T is one-to-one, Ker(T ) = {0}.
Conversely, if T (v1) = T (v2), then T (v1 − v2) = 0. So if
Ker(T ) = {0}, we have v1 − v2 = 0 and so v1 = v2.

(c) This is clear from the definition of Im(T ).

(d)T−1(cw1+w2) = cv1+v2 ⇔ cw1+w2 = T (cv1+v2).
�



Theorem 6.02: Let T : V → W be a linear map and
D = {v1, . . . , vn} be a list of vectors in V . Define
T (D) = {T (v1), . . . ,T (vn)}

(a) If T (D) is an li list in W , then D is an li list in V .

(b) If D is an li list in V and Ker(T ) = {0}, then If T (D) is
an li list in W .

(c) If D spans V and Im(T ) = W , then T (D) spans W .

(d) If D is a basis for V and T is a linear isomorphism, then
T (D) is a basis for W .

(e) If D spans V and S : V → W is a linear map with
T (v1) = S(v2), . . . ,T (v1) = S(v2), then T = S . That is,
T (v) = S(v) for all v ∈ V .



Proof: (a) Assume c1v1 + · · ·+ cnvn = 0. We must show
c1 = · · · = cn = 0.

0 = T (0) = T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).
Because the list {T (v1), . . . ,T (vn)} is li, it follows that
c1 = · · · = cn = 0.

(b) Assume
0 = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · ·+ cnvn).
Because Ker(T ) = {0}, 0 = c1v1 + · · ·+ cnvn. Because D is
li, c1 = · · · = cn = 0.

(c) For w ∈ W , there exists v with T (v) = w (Why?). There
exist coefficients so that v = c1v1 + · · ·+ cnvn (Why?). So
w = c1T (v1) + · · ·+ cnT (vn).

(d) follows from (b) and (c).

(e) Check that {v : T (v) = S(v)} is a subspace of V because
S and T are linear. The subspace contains the spanning set D
and so equals all of V .
�



Theorem 6.03: For T : V → W a linear map,

dimV = dimKer(T ) + dimIm(T ). (6.4)

Proof: Every vector of Im(T ) is of the form T (v) and so we
can choose a basis {T (v1), . . . ,T (vr )} for Im(T ). Let
{vr+1, . . . , vn} be a basis for Ker(T ). We will show that
{v1, . . . , vr , vr+1, . . . vn} is a basis for V which will show that
n = dimV .

Assume 0 = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn. We must
show c1 = . . . cr = cr+1 · · · = cn = 0.

Apply T and note the vi ∈ Ker(T ) for r < i ≤ n implies
0 = c1T (v1) + · · ·+ crT (vr ). So c1 = · · · = cr = 0 (Why?)

This implies that 0 = cr+1vr+1 + . . . cnvn. So
cr+1 = · · · = cn = 0 (Why?)

Thus, {v1, . . . , vr , vr+1, . . . vn} is li.



Now let v ∈ V . We must find coefficients so that
v = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn.

There exist coefficients so that
T (v) = c1T (v1) + · · ·+ crT (vr ) (Why?)

T (v−c1v1+· · ·+crvr ) = T (v)−(c1T (v1)+· · ·+crT (vr )) = 0

and so there exist coefficients such that

v − c1v1 + · · ·+ crvr = cr+1vr+1 + . . . cnvn.

Thus, {v1, . . . , vr , vr+1, . . . vn} spans V .
�



Theorem 6.04: Let D = {v1, . . . , vn} be a list of vectors in V .
The map TD : Rn → V defined by

TD(x1, . . . , xn) =
n∑

i=1

x1vi = x1v1 + · · ·+ xnvn (6.5)

is a linear map.

If D is a basis, then TD is a linear isomorphism and inverse
map T−1D : V → Rn is given by T−1D (v) = [v]D , the
coordinate vector of v with respect to the basis D.

Proof: We saw above that the sum of two linear combinations
on a list is the linear combination obtained by adding the
corresponding coefficients. Similarly,

TD(cx1, . . . , cxn) = cTD(x1, . . . , xn). Thus, TD is linear.

If D is a basis then for any v ∈ V the equation
v = x1v1 + · · ·+ xnvn uniquely defines the coefficients and
the list of coefficients is the coordinate vector [v]D .
�



Corollary 6.05: For finite dimensional vector spaces V and W ,
there is a linear isomorphism T : V → W if and only if
dimV = dimW . In particular, if dimV = n, then there is a
linear isomorphism T : Rn → V .

Proof: If D = {v1, . . . , vn} is a basis for V , then
TD : Rn → V is a linear isomorphism and such a basis exists
exactly when dimV = n.

Thus, if dimV = dimW = n then there exist linear
isomorphisms T : V → Rn and S : W → Rn and so the
composition S−1 ◦ T : V → W is a linear isomorphism.

On the other hand, if T : V → W is a linear isomorphism and
D is a basis for V , then by Theorem 6.02(d) T (D) is a basis
for W . Therefore, dimV = #D = #T (D) = dimW .
�

Let us look at Exercise 7.2/ 1b, page 385.



Matrix of a Linear Transformation
Recall that for A an m × n matrix the linear map
TA : Rn → Rm is defined by TA(X ) = AX . By using bases we
can represent every linear map between finite dimensional
vector spaces in this way.

If T : V → W is a linear map and
B = {v1, ..., vn},D = {w1, ...,wm} are bases for V and W ,
respectively, then the matrix [T ]DB is the m × n matrix given
by

[T ]DB = [ [T (v1)]D ...[T (vn)]D ]. (6.6)

That is, we form the matrix by applying T to each of the
domain basis vectors from B in V . We list them in order,
thinking of them as a matrix but with vectors in W instead of
columns of numbers. We convert each vector to an actual
column of numbers by replacing each by its column of D
coordinates. Thus, we obtain the m × n matrix [T ]DB .



Theorem 6.06: Let T : V → W be a linear map with
B = {v1, ..., vn},D = {w1, ...,wm} bases for V and W . Let
[T ]DB be the m× n matrix associated to the linear map by the
choice of bases. If v ∈ V , then

[T (v)]D = [T ]DB [v]B . (6.7)

That is, the D coordinate vector of w = T (v) in Rm is

obtained by multiplying the B coordinate vector of v in Rn by
the m × n matrix [T ]DB .



Proof: By definition [v]B =


x1
·
·
xn

 means v = x1v1 + . . . xnvn,

and so w = T (v) = x1T (v1) + . . . xnT (vn). By Theorem 6.04,
the coordinate map w 7→ [w]D is linear and so

[w]D = x1[T (v1)]D + . . . xn[T (vn)]D .

This is, the linear combination of the columns of [T ]DB with
coefficients x1, . . . , xn. That is exactly

[T ]DB


x1
·
·
xn

 = [T ]DB [v]B .

�



Corollary 6.07: Let T : V → W and S : W → U be linear
maps with B ,D,E bases for V ,W and U .

[S ◦ T ]EB = [S ]ED [T ]DB . (6.8)

That is, the matrix of the composed linear map S ◦ T is the

product of the matrices of S and T provided that the same
basis D is used for W as the range of T and as the domain of
S .

Proof: Let v be an arbitrary vector in V . By Theorem 6.06
applied first to S ◦ T , then to S and then to T we have

[S ◦ T ]EB [v]B = [(S ◦ T )(v)]E =

[(S(T (v))]E = [S ]ED [T (v)]D = [S ]ED [T ]DB [v]B .
(6.9)

The result follows because if A and B are m× n matrices such
that AX = BX for all X ∈ Rn, then A = B . (Hint: let X vary
over the columns of In, which list is the standard basis for Rn).
�



An important special case lets us change the coordinates from
one basis to another. We use the identity map I on the vector
space V , so that I (v) = v for all v in V , but we use different
bases on the domain and range.
Let B = {v1, ..., vn},D = {w1, ...,wn} be two different bases
on a vector space V . They have the same number n of
elements when dimV = n. The transition matrix from B to D
is given by:

[I ]DB = [ [v1]D ...[vn)]D ]. (6.10)

That is, the columns are the D coordinates of the B vectors
listed in order.



Corollary 6.08: Let B and D be bases for a vector space V of
dimension n.

(a) [I ]BB = In. That is, the transition matrix from a basis to
itself is the identity matrix.

(b) [I ]BD = ([I ]DB)−1. That is, the transition matrix from D
to B is the inverse matrix of the transition matrix from B
to D.

(c) For any vector v ∈ V ,

[v]D = [I ]DB [v]B . (6.11)

Proof: (a) is easy to check, e.g. v1 = 1v1 + 0v2 + · · ·+ 0vn.
Then (b) follows from Corollary 6.07.

Finally, (c) is a special case of Theorem 6.06.
�



As we have seen, many of the spaces we look at have a
standard basis S whose coordinate vectors are easy to read off.
If T : V → W is a linear map with B is a basis for V and S is
a standard basis for W , then it is easy to compute [T ]SB .

For example, if A is an m × n matrix and X ∈ Rn, then with
respect to the standard bases Sn on Rn and Sm on Rm, just as
the coordinate vector [X ]Sn is X itself, so too [TA]SmSn = A.

If T : V → W is a linear map with
B = {v1, . . . , vn},D = {w1, . . . ,wm} bases for V and W
and S is a standard basis for W , then usually [T ]SB and [I ]SD
are easy to read directly. It is then sometimes easiest to use
the following application of Corollaries 6.07 and 6.08:

[T ]DB = [I ]DS [T ]SB = ([I ]SD)−1[T ]SB . (6.12)

Let us look at Exercises 9.1/1ad, page 501.
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