- (1) Matrix Arithmetic Be able to perform matrix computations. Know when the sum or product of two matrices can be defined. Know the two interpretations of AX = B for an $m \times n$ matrix A. (m equations in n unknowns; linear combination of the columns of A)
- (2) Matrix Inverse and Transpose know the definition and properties.
- (a) If a matrix A has a row of zeroes, can it have an inverse? Explain.
- (b) If A and B are invertible $m \times m$ matrices, prove that AB is invertible.
- (c) When is a matrix symmetric? For any matrix A show that AA^T is defined and is symmetric.
- (3) Echelon and Reduced Echelon Form Know the meaning and be able to perform the steps to put a matrix in echelon form. Be able to compute the rank of a matrix.

(4) Elementary Matrices - Know the definition of the elementary matrices associated with a row operation.

Know that doing a row operation is the same as multiplying by the corresponding elementary matrix.

Explain why an elementary matrix is invertible.

If A is an $m \times m$ matrix row equivalent to Q in reduced echelon explain what is true about Q when the rank equals m or when the rank is less than m. In any case, explain why Q = UA with U an invertible matrix.

(5) Solve the system AX = B by using the augmented matrix (A|B).

Explain why a system can have either 0 or 1 or infinitely many solutions. When do the different possibilities occur?

(6) Compute the inverse of A by using (A|I) and compute the inverse directly if A is a 2×2 matrix.

Using the inverse of A, when it exists, solve the system AX = B.

- (7) Linear Transformation When is a function $T: \mathbb{R}^n \to R^m$ a linear transformation?
- Explain why $T_A(X) = AX$ is such a linear transformation.
- Using the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$ for \mathbb{R}^m show that any linear transformation $T : \mathbb{R}^n \to R^m$ comes from a matrix A in this way.
- (8) Determinants know the properties and computation using reduction to echelon form.

Part II

- (1) Subspace of a Vector Space know the definition and compute examples.
- (2) For a list $\{v_1, v_2, \dots, v_n\}$ in a vector space V know the definition and important properties of the following:
 - (a) linear combination.
 - (b) linear independence and linear dependence.
 - (c) the span of a list.
 - (d) when the list spans, i.e. spans the entire space, or when

- a list spans a subspace.
 - (e) basis of a space or subspace.
 - (f) dimension of a space or subspace.
 - (g) coordinates of a vector with respect to a basis.
- (3) For an $m \times n$ matrix A be able to define and compute a basis for:
- (a) The Null Space of A (the solution space of the homogeneous system).
 - (b) The Column Space.
 - (c) The Row Space.
- (4) For an $m \times n$ matrix A row equivalent to Q in Reduced Echelon Form, understand the following equivalences:
 - (a) The columns of A form a linearly independent list.
 - (b) Every column of Q has a leading 1.
 - (c) The rank of A equals n.

and understand the following equivalences:

- (a) The columns of A span \mathbb{R}^m .
- (b) Every row of Q has a leading 1.

- (c) The rank of A equals m.
- and when m = n so that A is a square matrix understand the following equivalences:
 - (a) A is invertible.
 - (b) Q = I.
 - (c) The rank of A equals n.
 - (d) The columns form a basis for \mathbb{R}^n .