Do 10 complete problems. They are worth 10 points each. You receive credit only for 10 problems.
1. (a) For the matrix

\[A = \begin{pmatrix}
1 & 2 & 0 \\
0 & 3 & -2 \\
2 & 1 & 3
\end{pmatrix} \]

compute the inverse, \(A^{-1} \).

(b) Suppose you know that, for a matrix \(B \), one has \(B^{-1} = \begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & -1 \\
1 & 2 & 2
\end{pmatrix} \).

What is the solution of the following system of linear equations:

\[Bx = \begin{pmatrix}
2 \\
3 \\
-2
\end{pmatrix} \]
2. For the matrix

\[A = \begin{pmatrix}
1 & -2 & 0 & 1 & 0 \\
-2 & 4 & 1 & 1 & 0 \\
0 & 0 & -1 & -3 & 1 \\
1 & -2 & 1 & 4 & 1
\end{pmatrix} \]

compute a basis for (a) the row space, (b) the column space, and (c) the nullspace. For each space, compute also the dimension.
3. For the matrix

\[A = \begin{pmatrix} 0 & -2 & -2 \\ 2 & 4 & 2 \\ -2 & -2 & 0 \end{pmatrix} \]

compute the eigenvalues and for each eigenvalue compute a basis for the associated eigenspace.
4. For each of the following subsets of the vector space of 2×2 matrices, determine whether or not it is a subspace. Explain your answer.

(a) The set of matrices of the form \[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\] such that $a + d \geq 0$.

(b) The set of all invertible 2×2 matrices.
5. Let \{v_1, v_2, v_3, v_4\} be a basis for a vector space \(V\). Answer the following questions and justify your answers.

(a) Is \{v_1, v_1 + v_2, v_1 + v_3, v_1 + v_4\} a basis for \(V\)?

(b) Is \{v_1 + v_2, v_1 + v_3, v_1 + v_4\} a basis for \(V\)?

(c) Can you find a vector \(u \in V\), not equal to \(v_1, v_2, v_3\) or \(v_4\) such that \{\(u, v_1, v_2, v_3, v_4\)\} is a basis for \(V\)?
6. (a) Find the determinant of the matrix $B = \begin{pmatrix} 1 & 1 & 0 & 3 \\ -2 & 0 & -1 & -4 \\ 1 & 1 & 2 & 4 \\ -1 & -1 & 1 & -4 \end{pmatrix}$.

(b) Solve the system $Bx = 0$, where B is the 4×4 matrix given in part (a).
7. Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be given by $T(x, y, z) = (x + y, x - y + z)$.

(a) Find the matrix of T with respect to the standard bases for \mathbb{R}^3 and \mathbb{R}^2.

(b) Is T one-to-one? Explain your answer.

(c) Is T onto? Explain your answer.
8. Find the line of best fit $y = a + bx$ for the data points $(1, 3)$, $(2, 4)$ and $(-1, -1)$.
9. Find the orthogonal projection of the vector \((1, 2, 1, 1)\) onto the subspace of \(\mathbb{R}^4\) spanned by \((1, 0, 1, 1), (-1, 1, 1, 0), (0, 1, -1, 1)\).
10. Let P_k denote the vector space of polynomials of degree at most k. Let $T: P_3 \to P_2$ be the function defined by $T(p(x)) = p''(x) - 2p'(x)$. This is a linear map.

(a) Find the matrix for T with respect to the standard bases for P_3 and P_2.

(b) Find a basis for $\ker T$.