SUPPLEMENTARY NOTES FOR MATH 212

Chapter and section numbers refer to both 14th and 15th
edition of the textbook:

Thomas’ Calculus: Early Transcendentals, Haas, Heil, and
Weir (Pearson)

Review of Chapter 5
From first semester calculus, students are expected to
know three techniques (theorems) for evaluating integrals.

1 Linearity. Integration is linear viz., for a constant ¢ and
continuous functions f(z) and g(z

[ ererie = / o
/ f(z) £ g(a)da = / f(z) dz + / g(<) de

2 Substitution Theorem. For continuous functions f(z),

u(z) and ¢g(z), [ f(u(z))u (z) dz = / f(u) du. The meaning
of the right side of this equality is that if F' is an antiderivative

of f, then / f(u) du = F(u(z)).

3 The Fundamental Theorem of Calculus. If f(z) is a

differentiable function and a is a constant, then
& 10a=1@ wmd [ La- e - s,

(The Fundamental Theorem could be stated more gener-
ally, but this is 1s sufficient to produce entries in a table of
integrals in Section 8.1)

Example: Since g—zsinx = cosz, we have [coszdr =

sinz + C.



Example: Evaluate [ z(z? —4)° dz.

Solution 1: We rewrite the integral in a form for which
the substitution theorem apphes with f(z) = 2°, and u(z) =
r? — 4.

[:1:(:1:2 — 4)° dg :[ %2:1:(352 — 4)° dz = %/23)(3:2 —4)° dg

1 [ 1w’ (22 —4)1°
- — d = — = C
/ =970 20

Solution 2 (Whlch shows why the theorem 1s named the Sub-

‘4 o
stitution Theorem) The symbol 7, means the derlvatlve of f
x

but we treat it as if it were a fraction.

u = 2 —4
/x(:z:2 — 4)9 dz *
du
1 dz =2z
_ 9r~
—/u (2du) du =2z dzx
10
_ lu__ —du =z dzx
2 10 2
(332 . 4)..10 |
= C
20 +

For a definite integral, one must distinguish between limits for
z and limits for u. We illustrate with the function above inte-
grated from 2 to 3. As z ranges from 2 to 3, u(z) ranges from

u(2) =0 to u(3) = 5, so

3 , . 5 ul0 o 510
/rz*zx(:c —4) d:c:/uzou duzz—o 0= 59 OF

| / z(z? — 4)°dz = (g; .20_.). - 5257
r=2
10 10 _ 010
N Y3 S 2
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Some elementary facts about integration are listed below.

b
1. For constants a, b and c, / cdz = c¢(b— a).

b \ _

2. / f(z) dz is equal to the total /\

a

area below the curve when it is Ay /g\ \ ;’ Y
above the z-axis minus the total o A Ay
area above the curve where it is

below the z-axis. For example, for the function whose graph is
on the right, the value of the integral is A; + Az — (A2 + A4).

A

3. Fora<bandff )dasz(x)b

0,7

fb d‘”—_f ff")d-’ﬂ—u( )|b

Example Instead of
fsm:cda: = —cosz|? = —cosb— (—cosa) = cosa — cosb
orble can write
fsinxdx = —cosxlg = cosz|g = cosa — cosb.
o
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4. A function f is called

even if f(—z) = f(z) for

all z in it’s domain; f(z) = z2

1s even. A function is even if and only

if it has symmetry about the y-axis.
If f is even,

Jo flz)dz = 2[0 z) dz.
Afunctlonflscalled T e

odd if f(—z) = —f(z) for

all z in it’s domain; f(z) = 22 is

odd. A function is odd if and only

if it has symmetry about the origin.

If fis odd, [ f(z)dz = 0. 7
A product of two even or two odd /

functions is even; a product of an even

and an odd function is odd. A polynomial 2 L ¥

| ¢ =Fmr=r"

is even (odd) if and only if only even :
(odd) power terms have nonzero coefficients:

5. fab sin(cz) dz = 0 and f: cos(cz) dz = 0 if the length b — a
of the interval of integration is an integral multiple of 27 /c.
We explain why. First, the period sin(cz) and cos(cz) is found
by setting cx = 2, so the period is 2w /c. Now we illustrate
with an example.

Example: Show fﬂl;g /8 sin 2z de = O by looklng at the

graph. The period of sin 2z
is 27w /2 = 7. By looking at - - —
the graph, we see we could move \/ W k{é& ,-§,E

the portion of the graph from

27 to 177 /8 back to the origin to obain two loops of the graph
above the z-axis and two loops below the z-axis, and this cut
and paste from the end to the beginning works because the




Section 7.1 =

For integration (and differentiation) of exponential and
logarithmic functions, the following change of base formulas
can be useful:

loga C b — af logab

| =
28 ¢ log, b

Use of the special case a = e occurs frequently:

Inc R,
| _ b — cln p
OgbC lnb €



Section 7.2
Exponential Growth and Decay

Quantities y whose size can be described by the equation
y(t) = Ae*®, where A and k are constants are said grow (if
k > 0) or decay (if ¥ < 0) ezponentially. Letting ¢t = 0 in this
equation shows y(0) = A. Often yg is used to denote y(0).

Using the change of base formula e*! = b*t1°8s ¢ we see
that the equation above can be described using any base. Fre-
quently, using base e is convenient, but there are times when
another base is convenient.

For two values, t; and 3, of ¢, if we know the values y; =

y(t;), and we let At =ty — 1, then

kt
Y2 _ Yoo T _ kat

Y1 yoekh

In (y—z) — kAt
Y1

k=—1In| =
Atn(yl)

[iln(yl/UZ)]t (6ln(y2/yl))t/At

y(t) = yoe = Yo

y(t) = yo (y—z)tmt,

U1

and this form of expression of y(t) is also sometimes convenient.
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Example: Suppose a group of rabbits initially has 60 rab-
bits and the number of rabbits in the group doubles every 8
days.

(a) Find a formula for'the'vappr(')xtir'nét.e‘ number, N (lt), of
rabbits after ¢ days.
(b)Find the approximate number of rabbits after 44 days.

(¢c) Find the number (the answer is an integer) of rabbits
after 48 days.

Solution: (a) yo = 60, yg = 2(60), so

y(t) = yo (ys)t/g = (60)2"/°.

Yo

(b)  y(44) =(60)2*%/8 = (60)2°+1/2 = (60)(32)v/2
=1920v/2 ~ 2715.

(c) y(48) = (60)2° = (60)(64) = 3840.

Note: Applying the change of base formula in (a) we get
y(t) = 60eln2)/81t and in part (c), we would get y(48) =
60¢°'® 2 which does simplify to (60)(64), but perhaps this is
less obvious.



Example 3 from section 7.2 in text: A yeast culture origi-

nally has 29 g., and 30 minutes later has 37 g. How long does
it take to double.

Solution: y(t) = 29 (%)t/30' Let t5 be the time to double
from 29 g to 58 g:

g7\ t2/30
y(tz) = 29 (%) = 58

g7 t2/30
(t2/30) In (%) = In2

; 301n 2
~ In(37/29)°

Example:’. All temperatures are in degrees Fahrenheit.
An object is submerged in a liquid maintained at 60°. One hour
after being submerged the temperature of the object is 180°,
and after three hours, the temperature is 90°. Let T'(¢) be the
temperature of the object at time t hours, and let (AT)(t) =
T(t) — 60 be the difference between the temperature of the
object and the temperature of the liquid. Assume that (AT)(¢)
satisfies an exponential decay law.

(a) Find {.::© the function T'(t).

(b) Find, to the nearest half degree without using a calcu-
lator or other electronic device, the temperature of the object
6 hours after being submerged.

(¢) Find an exact expression for the time ¢ at which the
temperature of the object is 61°.

Solution: In tabular form the information given is.

t T(t) (AT)(t)

0o 7

1 180 120



So

t/(3—1)
(a) (AT)(t) =(AT)o (%) ol

—(AT), (i)t/(g_l) — (AT)q (%)t

120 = (AT)(1) =(AT), (%)1

(AT)o =240
T(t) =60 + (AT)(t) = 60 + 240 (%) t
240 15

=60+ — =63.75

16 .
b) T(6) =60+240( =) =60+ —
(b) T(6) = 60+ (2) 0+ 2 ;

(c) 61=T(t) =60+ (240) (%)

1 t
1=240( =
(2

_ln% ~ 1n240
 Ini  In2°

(~ 7.9 hours)



10

Section 8.8

Rate of Growth of Functions

The material presented here is similar to that in Section
7.4. It is useful when applying the Limit Comparison’ for im-
proper integrals, and a discrete analogue of this material will
be essential for much of what is done in Chapter 10 on Infinite
Series.

By the phrase “f = o(g) at a” we mean lim,_,, Hz) — .
: : : 2 g(=)
Usually, we will be interested in a = oo and functions f and
g for which limg; .o f(z) = oo and lim; .o g(z) = co. Our
intuitive interpretation of f = o(g) is that the function ¢ is
getting large faster than f as z — oo.

For now lim will mean lim,_, ..

Examplet: If 0 < m < n, then ™ = o(z"), i.e.,

R e , 1
lim — = lim

For a more specific example z? and 2z both get large as z
becomes large; 1002 is ten thousand, quite large, but 1002 is a
million, much larger.

The notation used here,instead of f = o(g),is f << g¢.
This is done to call attention to the fact that the relation is
transitive: if f << g and ¢ << h, then f << h. The proof is
simply that

/() = lim
h(z) g(z) h(z)

If f and g are non-negative functions, then lim(f/g) = 0 if and

lim
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Example 2: By L’Hépital’s rule, lim ; = lime% = 0.
Now lim —ﬁ—j— = lim ﬁ—ff = 0. In the same fashion if p(z) is any

polynomial, then p(z) << €®*. If 0 < a <1 and z > 1, then
z? < z,s0 2% << €®. For a > 1, continued iteration of

. 72 . axa—l
lim — = lim = ...
e’ e*

leads to the conclusion that z¢ << e*, for all a > 0.

Example 3: For a > 0,

lim 2% i T
T axr®— ax?

le. lnxz << z2.

Reasoning as in Examples 1-3, we see that if:

log is logy z, b > 1;
p(z) is a polynomial, or a positive power of z; and
exp is an exponential a°*, a > 1, ¢ > 0,

then log << p(z) << exp.
If U,V,u;,v;, for all 7, are non-negative functions and

f=U+uy + -+ Um, where u; << U for all 1;
g=V +v1+--+ vy, where v; <<V for all 7; and U <<V,

then, by dividing both numerator and denominator by V', we

see

U U U
Uy % [
Y V‘_ V.':Ehﬁlrj.

Yy
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Example 4:
1 zt +32% + 4 1‘_' 4 0
im — lim — —
8 + 622 + 1 m x6
Example 5:
e + 2241 . et
lim =lim — =




