Section 12.1

3-Dimensional Coordinate Systems

3-DIMENSIONAL COORDINATE SYSTEMS
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We will refer to the f};)lamne as R? and aﬁ of 3-dimensional
space as R3.

Points in 3-dimensional space are described in a manner
analogous to points in the plane. We draw three mutually per-
pendicular lines, again called axes, each of which is considered
to be a copy of the real line. In the diagram above, the axes,
labelled x—, y— and z—axes, have their letter names written
on the positive side of the real line. The intersection of these
axes is called the origin. The planes that go through twe axes
are called coordinate planes. For example the horizontal plane
that goes through the x— and y—axis is called the zy—plane.
It is common practice to call the vertical axis the z-axis. The
coordinates of a point in three dimensions, (a,b,c), identify a
point by starting at the origin and travelling ¢ amount in the
z direction, then b amount in the y direction, and ¢ amount in
the z direction.

The left and middle diagrams above are the same, in the
sense that either one could be rotated about the z—axis to
look exactly like the other. On the other hand, the diagram
above on the right can not be rotated to look like the other
two. Every 3-dimensional coordinate system is either right-
handed or left-handed, but not both. We describe this on a
separate slide. WE WILL ALWAYS USE A RIGHT HANDED
COORDINATE SYSTEM. .
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In these notes we show the z-axis in'the plane of the paper,
blackboard or screen on which it is drawn, as in the graph above
on the left. This way, if we wish to look at the horizontal
ry—plane turned up as in the diagram above in the middle,
which shows a parabola drawn in the zy—plane, we only have to
visualize the xy—plane being rotated about the z—axis. From
the point of view of most texts, as shown above on the right,
the zy—plane has to be rotated first about the z—axis and then
about the z—axis.

Just like the coordinate axes in the plane divide the plane
into four quarters called quadrants,. the coordinate planes di-
vide 3-dimensional space into eight octants. The octant con-
sisting of all points with all positive coordinates is called the
first octant. From our perspective, the first octant is in the
top right half of space, behind the screen. No other octant has
a standard name.

The graph of an equation in z, y, and z is the set of all
points (a, b, c) such that when all occurrences of z,y, z are re-
placed by a,b, ¢, respectively, the resulting statement is true.
For example, the graph of z =1 is a horizontal plane one unit
above the ry—plane, and the graph of a:2 + y + (z—1)2=0
is the single point (0,0,1). ' -
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Recall that, in an equation in z and y, replacing all oc-
curences of z (y) by z — a (y — b) shifts (also referred to as
translates) the graph of the equation horizontally by a (verti-
caly by b). Examples of these shifts are shown in the diagrams
above. Graphs in three dimensions are shifted in exactly the
same way.
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Recall that the reflection of the point (z,y) about the z-
axis [y-axis| is (z, —y) [(—z,y)]. That is, the variable we replace
by its negative is the opposite of the axis variable. Therefore,
the graph of an equation in z and y has symmetry about an
axis, replacing the opposite variable by its negative yields an
equivalent equation (i.e., one with the same graph). For exam-
ple for the graph of y = z2, the fact that y = (—z)? has the
same graph as the original equation shows that the graph of
y = 22 has symmetry about the y-axis. By looking at —y = 22,
we see the original graph does not have symmetry about the
r-axis. Similarly, inversion (or reflection) of (z,y) about the
origin is (—z, —y), so the test for an equation being symmetric
about the origin is to replace both z and y by their negatives.
The graph has symmetry about the origin if the new equation
is equivalent to the original: —y = (—z)? is not equivalent to
the original, the graph of y = 22 is not symmetric about the
origin.



These tests have analogues for graphs of equations in three
dimensions. In this setting we can talk about symmetry about
a coordinate plane, an axis, and the origin.

For example, to test for symmetry about the | Y

zy—plane: replace z by its negative; , *”
z-axis: replace z and y by their negatives;

. . . . . Z.
origin: replace all three variables by their negatives. * =x vy

In each case we replace the variables not involved in de-
scribing the type of symmetry by their negatives. We will show
later that the graph of z = 22 + y? is a bowl with parabolic
side walls and a circular top, as shown in the graph above. You
should check that it has symmetry about zz— and yz— planes
and about the z—axis only.



OTHER BASIC CONSIDERATIONS

DISTANCE FORMULA

The shadow of a point (z,y, 2) when light traveling per-
pendicular to the zy—plane shines onto the point is called the
projection (more precisely the orthogonal projection) onto the
ry—plane. Sometimeswerefer to this informally as the shadow
of the point in the noon day sun. If we think of the point
moving vertically towards its shadow, only z is changing, so
coordinates of the projection are (z,y,0).

The formula for the distance between
two points (z1,y1,21) and
(z2,y2,22) is a natural analogue
of the two dimensional version:
d = \/(A2)? + (Ay)?. |
The diagram at the right contains two
right triangles. One is the triangle
in the zy—plane with sides
+Azx, +Ay and £Ad.
The distance formula in the plane comes from applying the
Pythagorean theorm to this triangle. The second triangle in
the diagram is the one that rises vertically and has sides D,
d and £Az. Using the Pythagorean theorem again, we obtain
D? = d*+(Az)? = (Ax)?+(Ay)?+(Az)?, yielding the natural

analogue to the two dimensional distance formula.

MIDPOINT FORMULA

From the fact that corresponding sides of similar triangles
are in proportion, we can obtain another natural analogue: The

midpoint of the line segment with endpoints (z1,y1,21) and

(xz’y2722) is (mgmz : yl-;yz .2—'1';22 )




EQUATION FOR A SPHERE

We use the distance formula to find an equation whose
graph is a sphere with radius r centered at (h, k,l). By defini-
tion of a sphere, any point (z,y, z) on the sphere has distance
rto (h,k,0): (z—h)2+(y—k)2+ (2—1)%2 = r?, and this is the
standard form of the equation for a sphere.

Example 1: Show graph of the following equation is a
sphere, and find its center and radius:

2 +y? 4+ 22 +3x—424+1=0

Solution: We complete the squares to put the equation in
standard form.

3 9
(x+§)2—1+y2—|—(z—2)2—4+120
° AT L R
iy =2dva-1=2

so the center is (—2,0,2) and the radius is \/ 24—1 = 3@
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CYLINDERS (AND CONES)

We recall the general definition of a cylinder. Given some
curve in a plane in space and a direction, which now will be
represented by a line, the cylinder consists of all lines through
each point in the curve in the given direction, i.e., parallel to
the line representing the direction. Another way to phrase this
is to sweep the curve parallel to the line in the given direction
indefinitely far either way to get a surface. See the example
on the left below. The term cylinder may also be used for the
portion of the cylinder as defined above which is between two
parallel planes, with the distance between those planes called
the height of the cylinder.

Given a curve in some plane in space and a point V not in
the plane of the curve, the cone consists of all lines through V
and a point on the curve. See the diagram below on the right.
The portion of the cone between the vertex to the curve is a
also referred to as a cone.



Our interest now is in the cylinders that arise from graphs
of equations in two of the variables z, y and z that are graphed
in three dimensions.

Example 2: Graph 22 + y? = 4 in R3.

Solution: If we look at points in the zy—plane of R3,
namely points of form (z,y,0), then the portion of the graph
in the zy—plane is the circle of radius 2 centered at the ori-
gin. If we take a point and move it vertically, the z— and y—
coordinates won’t change. Thus, if we take any point on the
circle and move it vertically, the moved point will still satisfy
z? +y? = 4, so any point vertically above or below the circle in
the plane will also be part of the graph. I.e., the cylinder swept
out by moving the circle straight up and down is the graph. A
cylinder which is obtained by sweeping a curve in a direction
perpendicular to the plane of the curve is called a right cylin-
der. In particular, since the curve here is a circle that is being
swept perpendicular to its plane, we call this a right circular
cylinder.

For any equation in two variables graphed in R3, we graph
the figure in the two dimensions of the variables in the equation
and sweep that curve perpendicularly in the direction of the
missing variable. Below is the cylinder of Example 2 and the

cylinder z = y2, whose graph could be viewed as a trough,
indefinitely wide and indefinitely tall.
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INTERCEPTS

For the graph of an equation in the plane, we find its z—
[y—|intercepts by setting the opposite variable y [z] equal to
zero. In three dimensions, one can look for, in addition to
z—, y— and z—axis intercepts, where a graph intersects the
zy—, tz— and yz—planes. These intercepts can be found in a
manner that generalizes the “set the opposite variable equal to
zero” method in R?. Here is how we find some intercepts:
r—intercepts: set y =0, z =0
ry—intercepts: set z =0

That is, set all variables not involved in describing the
intercept equal to zero.

Example 3: Describe the intercepts of the equation
(x—2)2+y2+22=1
Solution: z—intercepts: (z — 2)*
y—intecepts: (—2)% +y% =1; y?
similarly no z—intercepts
ry—intercepts: (£ —2)2+y? =1 acircle centered at (2,0)
rz—intercepts: similarly a circle in the rz—plane
yz—intercepts: (—2)% +y? + 2% = 1; y2 4+ 22 = —3; none

1 z=1,3
—3; no y—intercepts

S i S , - = =

The set of points at which a surface and a plane intersect
is called the trace (or cross-section) of the surface on the plane.

Thus, the set of zy-intercepts would usually be referred to as
the trace on the zy-plane.



Section 12.6

Conic Sections and Quadric Surfaces

CONIC SECTIONS

A conic section is the intersection of ‘a right circular cone
and a plane.

THE GENERAL SECOND DEGREE EQUATION

The degree of a term of a polynomial in more than one
variable is the sum of the exponents of the variables in the
term. For example, the term 223y2? has degree 3 + 1 + 2 = 6.
By the general second degree polynomial in two variables, we
mean all polynomials in two variables whose terms have degree
at most two and at least one term is of degree two. The general
second degree equation is the equation that a general second
degree polynomial equals zero, i.e., it 1s of the form

Az? + By? + Czy+ Dz + Ey+ F = 0.

We ask the question, seemingly unrelated to conic sections,
of what are all possible graphs of second degree polynomial
equations. To answer this question we rewrite the equation

several different ways. Y ¢
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zy term is zero. Thus, we
will only consider second degree equationswith no zy term.



I Conic Sections
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If both A # 0 and D # 0, then we can complete the square
and write

Az? + D+ F = A(z — a)? + F.

Similarly we can complete the square if B # 0 and E # 0
to get B(y —8)%+ F’. Since a and 3 are shifts, we can consider
only the case for which thére is square term or a linear term
but not both, for both variables, and all possible graphs of the

general second degree equation are rotations and/or shifts of
equations of the form

{Am2 '{By2
- = F,
Ax By

where we pick just one term in each bracketed pair. If F' # 0,
we can transpose the constant term to the right and divide both
sides of the equation by the transposed constant to obtain the

form
{ Az? { By? { 1
+ —
Az By 0

202 +0y? + 4z +y+6 =2[z° — 22| +y+6
= [(:r:—l) 1|+y+6
=2(z—1)*+y+(-2+6)=0

For example,

If we can graph — —x2 — —y = 1 ‘then we Just shift one unit hor-
izontally to obtam the graph of the equation displayed above.
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We make one last modification: If A > 0, then we may
write A in the form A = % (let a = 1/VA). If A < 0, write
A = —2L where a = 1 /|A| Similarly. write B = %35, and

make this change of notation on the top lines above:

Az By

We now examine each possibility with last forms written
above:

Case 1: The constant is 1.
(a) Both terms on the left are squares
(1) 2 pluses | o
(ii) 1 plus
(ii) both minuses
(b) There is only one square term.
(c) No square terms: then equation is linear, not second
degree.

Case 1(a)(i)

2 2
y _
2 + 2 1
We construct the graph.
~ ¢ . . e %h‘...\\‘\“{a
First we find the intercepts. ; b
Set y = 0 to find the z o A
intercepts: z? = a? and N
x = *a. Similarly y = =+b.

We graph the portion of the

graph in the first quadrant, by solving for y. The first and
second derivatives are both negative, so the curve is decreasing
and concave down. Finally we see, by replacing first x and then
y by their negatives, that the graph has symmetry about both
the x— and y—axes. This graph is called an ellipse. When
a = b we get the circle of radius a as a special case.



For use in our discussion of quadric surfaces, we need to

look at a slightly more general equation that that given for the
ellipse.

Example: For d = %, 1,4 graph the equation

22 2
47 4y
4+9

Solution: For d = 1 this is the ellipse with vertices (+2,0)
and (0, +3).

For d = 4, we write

2

4 =
.’132

v
9
y2

=1
4-4+4-9
72 y?

(Va2 Vaae

This an ellipse with parameters a and b that are twice those of
the equation with d = 1.

1

Ford—§
z2 2 1
2y _ 1
4 9 2
72 y2
;.—|—1 ::1,
24 29

and the parameters here are \/g times the parameters with
d=1.

The conclusion is that the parameters for d are v/d times
that parameters when d = 1.



We graph the first equation,
beginning by finding the
intercepts. For xz—intercepts,
12 = a?, so x = +a, For
y—intercepts —y? = a?. Since” =
—y% <0 and a? > 0, there are
no y—intercepts. In the first 13\
quadrant y = by/(z?/a?)—1. For large values of z, the (-1)
term in the radical is very small compared to z%/a?, so y =
i%az are asymptotes. Since y' > 0 and y” < 0 in the first
quadrant, the curve is increasing and concave down. Again,
symmetry about both axes, allows us to finish the graph. This
graph 1s called a hyperbola.

For the second equation, there will be intercepts y = +b
and no x—intercepts, and the graph will open up and down,
instead of left and right.

Casel(a) (iii)
22 2
I A
a? b2
Since the left side is less than or equal to zero for all z and y,

the graph is empty.

Case 1(b) 2/a® + By = 1 or Az + y?/b* = 1 is clearly a
parabola opening up or down for the first equation and left or
right for the second case. =~~~

Case 2, the constant is 0, yields only two degenerate graphs
and a duplication of Case 1(b). Thus, the non-degenerate
graphs of all second degree equations coincide with the non-
degenerate conic sections.



Example 1: Graph 22 4+ 3y%2 +6y =0
Solution: Complete the square:

z? +3[y? + 2y = 0
22 +3[(y+1)* -1 =0
2 +3(y+1)2-3=0
z? +3(y+1)2 =3
g U=t T
= (y+1)° A

Va1

QUADRIC SURFACES

=1

A quadric surface is a graph of the general second degree
polynomial equation

Az®*+By*+C22 +Dzy+Ezz+ Fyz+ Gz + Hy+1z+J = 0.

We first observe that if only two of the variables appear
in the second degree equation (i.e., both the square and linear
term of one variable have coeflicient zero), then, as we observed
earlier, the graph is a cylinder.

¥ %Y 10 R3
Example 2: 4- +%- = 1in R®.

Solution:

Example 3: Describe the graph of (z —1)(z—3) = 0 in R3
Solution: It is the two planes ¢ = 1 and z = 3 which are
perpendicular to the x—axis. In general the graph of a second
degree equation in just one variable is the empty set or one

or two planes perpendicular to the axis of the variable that
appears in the equation.
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We wish to catalogue quadric surfaces in a manner anal-
ogous to what we did for conic Sections. Since our discussion
shows what is possible if only one or two of the variables appear
with nonzero coefficients, we assume all three variables appear
in the equation.

Two rotations (not requiring advanced mathematical tech-
niques, but intricate enough that it never would be included in
an elementary calculus book) will eliminate the cross product
terms by describing the graph in the rotated coordinate axes.

Also, as for conics, we can complete the squares and shift
to assume our equations are of the form

s e |
] Ty i?—{o
Ax By Cz

Case 1: The constant is 1.
(a) 3 terms on the left are squares
(i) 3 pluses
(ii) 2 pluses
(iii) 1 plus
(iv) no pluses: left side less than O SO empty graph
(b) 2 terms on the left are squares =
(1) no pluses or 2 pluses
(i1) 1 plus
(c) 1 term on the left is a square
(d) No square terms: then equation is linear, not second
degree.
Case 2: The constant is O.
(a) 3 terms on the left are squares
(i) 3 pluses or no pluses: graph is just the origin
(ii) 1 or 2 pluses
(b) 2 terms on the left are squares:. same as . Case 1(b)
(c) 1 term on the left is a square: same as Case 1(c)



Case 1(a)(i)
2 2 2

SHmG =1 3
We think of how a clay pot
may be built in layers. Put a
frame up and build the layers
around that. For our “frame”
we look at the portion of
the graph that is in the
the plane of the screen,
the zz—plane from my perspective, that is, the portion of the
graph with y = 0:

which is an ellipse, as shown at the right. Then we build hori-
zontal strips at height z = zq,

2
x ye B
ZLE + b_2 =1— —=d
This is an ellipse with dimension shrunk in proportion by a
factor v/d. By symmetry the bottom half is symmetric with

the top half. This figure is called an ellipsoid.






