THE CITY COLLEGE OF NEW YORK
 DEPARTMENT OF MATHEMATICS
 SPRING 2023

MATH 21300, FINAL EXAMINATION

Your name (Print): \qquad

EMPL. ID: \qquad

INSTRUCTIONS:

- Notes, books, and calculators are not to be used.
- All work on this exam is to be your own.
- Read each problem carefully. Unless otherwise instructed, be sure to show your work. Remember that it is your obligation to answer each question clearly and in a way that convinces the grader that you understand how to solve the problem.
- Stop working immediately at the end of the exam when time is called.

Problem \#	Out of	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{7}$	10	
$\mathbf{8}$	10	
$\mathbf{9}$	10	
$\mathbf{1 0}$	10	
total	100	

1. Let P_{1} be the plane $3 x-y+z=5$ and P_{2} the plane $x+2 y=-9$.
a) Find the angle between the planes P_{1} and P_{2}. You may use an inverse trigonometric function in your answer.

b) Find parametric equations for the line in which P_{1} and P_{2} intersect.
2. Find the following limit or show that it does not exist.

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{x y-x}{x^{2}-y^{2}} .
$$

3. Let $f(x, y)=\frac{2 x}{y+1}$.
a) Find the linearization $L(x, y)$ of the function f at the point $P_{0}(1,1)$.

b) Find an upper bound for the magnitude of the error E in the approximation $f(x, y) \approx$ $L(x, y)$ over the rectangle $R: 0.9 \leq x \leq 1.1,0.8 \leq y \leq 1.2$. You may use decimals and fractions in your answer.

4. Let $f(x, y)=x^{2}+y^{2}-x y-x$.
a) Find and classify all critical points of f.

b) Find the absolute minimum value of the function f on the triangular region bounded by the lines $x=0, y=1$, and $x-2 y=0$.

Absolute min.:

5. a) Change the following Cartesian integral into an equivalent polar integral.

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} e^{x^{2}+y^{2}} d x d y
$$

Answer:

b) Evaluate the polar integral from part a).
6. A solid E is bounded below by the surface $z=y^{2}$, above by the plane $z=1$, and on the sides by the planes $x=0$ and $x=1$. Find the moment of inertia with respect to the z-axis if the mass density $\delta(x, y, z)=1$ for all (x, y, z) in E.
7. Find the circulation of the field $\mathbf{F}(x, y)=3 y \mathbf{i}+2 x \mathbf{j}$ along the ellipse C given by

$$
\mathbf{r}(t)=\cos t \mathbf{i}+3 \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi .
$$

8. Let E be the solid region bounded below by the plane $z=0$, above by the sphere $x^{2}+y^{2}+z^{2}=9$, and on the sides by the cylinder $x^{2}+y^{2}=4$.
a) Set up the integral that gives the volume of E using cylindrical coordinates and the order of integration $d z d r d \theta$. Do not evaluate the integral.

Answer: \square
b) Set up the integral that gives the volume of E using cylindrical coordinates and the order of integration $d r d z d \theta$. Do not evaluate the integral.
9. Determine whether the following vector field is conservative in the plane. If it is conservative, find a potential function for \mathbf{F}.

$$
\mathbf{F}(x, y)=\frac{2 x y}{1+x^{2}} \mathbf{i}+\ln \left(1+x^{2}\right) \mathbf{j}
$$

10. Evaluate the line integral

$$
\int_{C} e^{x^{2}} d x+\left(x^{3}-\ln (\sin y+3)\right) d y
$$

where C is the counterclockwise oriented circle $x^{2}+y^{2}=4$. Use whatever method you prefer.

Value:

