You have 2 hr 15 min . Answer each non-graph question neatly on the line provided.

Name: \qquad

Page	Points	Score
1	8	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
9	8	
Total:	100	

1. (4 points) Perform the indicated operations $\frac{3}{\frac{3}{5}}-\frac{\frac{3}{5}}{3}$ and simplify as much as possible.
2. \qquad
3. (4 points) Perform the division $\frac{x^{2}-16}{2 x-8} \div \frac{x^{2}+4 x}{4 x}$ and then simplify completely as one rational expression.
4. \qquad
5. (4 points) Perform the multiplication $\left(x+\frac{5}{x}\right)^{2}$ and simplify completely. Leave no parenthesis in final answer.
6.
7. (4 points) Factor $(z-2)^{2}-5(z-2)$ completely.
8. \qquad
9. (4 points) Find all solutions a to $49 a^{2}-1=0$.
10.
11. (4 points) Solve $2(3 x-5) \leq 4 x+12$. Express your answer in interval notation.
12.
13. (4 points) Find an equation of the line through the points $(-1,-2)$ and $(4,3)$.
14. \qquad
15. (4 points) Find all solutions x to $x^{2}-4 x=12$.
16.
17. (4 points) Evaluate and simplify the expression $g(a+1)$ completely as one fraction when $g(t)=\frac{t^{2}-1}{t-1}$.
18.
19. (4 points) Perform the addition $\frac{5}{2 x-3}+\frac{15}{(2 x-3)^{2}}$ and then simplify completely as one rational expression.
20. \qquad
21. (4 points) Find the maximum or minimum value of $f(x)=1-4 x-x^{2}$. You must indicate if your answer is a maximum or minimum.
22.
23. (4 points) Find all solutions x to $\log _{2}(x)+\log _{2}(x-3)=2$.
24.
25. (4 points) Simplify $\left(\frac{a^{4} b^{-3}}{b^{4}}\right)^{2}$ as much as possible and eliminate any negative exponents.
26. \qquad
27. (4 points) Find the length of the arc that subtends a central angle of measure 20° in a circle of radius 13 m . You may leave π in your answer).
28. \qquad
29. (4 points) The angle of elevation to the top of a tall building is found to be 14° from the ground at a distance of 0.5 mi . from its base. Find the height of the building. (You may leave sin, cos, or tan in your answer).
30. \qquad
31. (4 points) Find $\tan ^{-1}(\sqrt{3})$
32. \qquad
33. (4 points) Evaluate $\cos \left(\frac{7 \pi}{6}\right)$
34.
35. (4 points) Find $\sin \theta$ if $\cos \theta=-\frac{5}{7}$ and θ is in quadrant II.
36.
37. (4 points) Solve $\frac{1}{t+9}=\frac{3}{t-2}$ for t.
38. \qquad
39. (4 points) [True/False] $f(x)=\frac{1}{x+10}$ and $g(x)=\frac{1}{x}+10$ are inverses of each other.
40.
41. (4 points) Evaluate $27^{\frac{-2}{3}}$.
42.
43. (4 points) Sketch of the polynomial $f(x)=\sqrt{16-x^{2}}$ by plotting points.
44. (4 points) Sketch the graph of $\mathrm{f}(\mathrm{x})= \begin{cases}-1 & x<0 \\ x^{2}-5 & x \geq 0\end{cases}$
45. (4 points) Sketch the graph of $y=-\sqrt{x+2}$ not by plotting points but by starting with the graph of a standard function and applying transformations.
46. (4 points) Sketch the graph of $h(x)=\left(\frac{1}{3}\right)^{x}+2$ not by plotting points but by starting with the graph of a standard function and applying transformations.
