Math 346 - Final Exam - Fall, 2022

Part 1 - Answer all parts of the following five questions.

1. (10 points) What is the rank of the following matrix?

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Does this matrix have an inverse? Explain your answer.
2. (12 points) In the vector space \mathcal{P}_{3} of polynomials of degree at most three show that $\left\{t^{3}+2 t^{2}-t+1,4 t^{2}, t^{3}+2 t^{2}+1\right\}$ is a linearly independent set. Does it form a basis for \mathcal{P}_{3} (Justify your answer)?
3. (12 points) (a) For the homogeneous system with the following coefficient matrix, obtain the general solution and use it to get a basis for the solution space.

$$
\left(\begin{array}{cccccc}
3 & -6 & 1 & 3 & 0 & 3 \\
0 & 0 & 1 & 0 & -3 & 0 \\
1 & -2 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(b) For the matrix of part (a) obtain a basis for the column space and a basis for the row space.
4. (12 points) For the matrix $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$,
(a) Compute the inverse and the determinant of A.
(b) Use the inverse to solve the system:

$$
\begin{array}{r}
3 x+y+z=2 \\
2 x+y=-1 \\
x+y+z=0
\end{array}
$$

5. (12 points) For the matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -3 & 2 \\
2 & -2 & 2
\end{array}\right)
$$

Compute the eigenvalues and a basis for each eigenspace.
Compute an invertible matrix Q and a diagonal matrix D such that $A Q=$ $Q D$, or, equivalently $Q^{-1} A Q=D$ (You need not compute Q^{-1}).
6. (12 points) For the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

use the Gram-Schmidt procedure to obtain an orthonormal basis for the column space and use it to compute the orthogonal projection of the vector $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ onto the column space.

Part 2 - Answer all parts of three of the following five questions (10 points each).
6. (a) Define what it means for the list of vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ to be linearly independent.
(b) If v_{1} is a linear combination of $\left\{v_{2}, v_{3}, v_{4}\right\}$, show that the list $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent, i.e. not linearly independent.
7. (a) For the row operation: to Row 2 add 4 times a copy of Row 3, write down the associated 4×4 elementary matrix and its inverse.
(b) Let A and B be invertible $n \times n$ matrices. Show that the product $A B$ is invertible.
(c) Suppose that A and B are 5×5 matrices with $\operatorname{det}(A)=3, \operatorname{det}(B)=5$. Compute $\operatorname{det}(2 A)$ and $\operatorname{det}\left(B^{T} A^{2}\right)$.
8. (a) Define what it means for an $n \times n$ matrix to be (i) orthogonal, (ii) symmetric.
(b) Show that if X_{1} and X_{2} are eigenvectors of a symmetric matrix A with different eigenvalues, then the pair $\left\{X_{1}, X_{2}\right\}$ is linearly independent.
9. Let $L: V \rightarrow W$ be a map between vector spaces.
(a) Define what it means for L to be linear.
(b) For the linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}, x_{3}-x_{2}\right)
$$

compute the matrix associated with the linear map, using the basis $B_{3}=$ $\{(1,0,0),(1,1,0),(1,1,1)\}$ for \mathbb{R}^{3} and the basis $B_{2}=\{(1,0),(0,1)\}$ for \mathbb{R}^{2}.
10. Find the least squares approximating line $y=z_{0}+z_{1} x$ for the set of data points $(x, y)=(-1,0),(0,0),(1,1)$.

