THE CITY COLLEGE OF NEW YORK

DEPARTMENT OF MATHEMATICS
FALL 2016
MATH 392, FINAL EXAMINATION

YOUR NAME (print and sign):

NAME OF YOUR INSTRUCTOR:

| Pr. 1 | Pr. 2 | Pr. 3 | Pr. 4 | Pr. 5 | Pr. 6 | Pr. 7 | Pr. 8 | Pr. 9 | Pr. 10 | Pr. 11 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | |

INSTRUCTIONS:

- There are a total of 11 problems.
- DO ALL PROBLEMS 1 THROUGH 7 AND THREE OF THE FOUR PROBLEMS 8-11. IN THE TABLE ABOVE, CROSS OUT ONE PROBLEM AMONG PROBLEMS 8-11 THAT YOU OMITTED.
- Each problem is worth 10 points.
- Notes, books and calculators are not to be used.
- All work on this exam is to be your own.
- Read each problem carefully. Be sure to show your work. Remember that it is your obligation to answer each question clearly and in a way that convinces the grader that you understand how to solve the problem.
- Stop working immediately at the end of the exam when time is called.

1. Determine whether the vector field \vec{F} given by

$$
\vec{F}(x, y, z)=\frac{y}{x^{2}+y^{2}} \vec{i}-\frac{x}{x^{2}+y^{2}} \vec{j}+z^{2} \vec{k}
$$

is conservative. Justify your claim.
2. Determine whether the following system of linear equations is consistent, and, if it is, find the set of solutions.

$$
\left\{\begin{array}{l}
2 x_{2}+x_{3}-x_{4}=1 \\
2 x_{1}+4 x_{2}+x_{3}+x_{4}=3 \\
x_{1}+x_{2}+x_{4}=1 \\
x_{1}+5 x_{2}+2 x_{3}-x_{4}=3
\end{array}\right.
$$

What is the rank of the matrix of coefficients and how many (if any) free variables does the system have?
3. Find the work done by the vector field

$$
\vec{F}(x, y, z)=2 y \vec{i}+e^{x} \vec{j}-z^{3} \vec{k}
$$

moving a particle along the curve C given by

$$
\vec{r}(t)=\left(t^{2}, t^{2}+2, t\right), \quad 0 \leq t \leq 1 .
$$

4. Use Green's Theorem to find the line integral

$$
\int_{C} \vec{F} \cdot d \vec{r},
$$

where $\vec{F}(x, y)=-y \vec{i}+x^{2} \vec{j}$, and

$$
C=\left\{(x, y): x^{2}+|y-1|=2\right\}
$$

oriented counterclockwise.
5. Let $\vec{F}(x, y, z)=2 x \vec{i}-y \vec{k}$ and S be the boundary surface of a region E in \mathbb{R}^{3} given by

$$
E=\left\{(x, y, z): z \geq x^{2}+y^{2}, x+y+\frac{1}{2} z \leq 1\right\} .
$$

We assume that S is oriented outward with respect to E. Use the Divergence Theorem to compute

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

6. Approximate to three decimal digits the surface area of the patch on the graph of

$$
z=-x^{5}-y^{2}+e^{x y-1},
$$

for $1 \leq x \leq 1.1,1 \leq y \leq 1.2$. You may assume that $\sqrt{2} \approx 1.4$.
7. Solve the following linear system of ODE's.

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2\left(y_{1}+y_{2}\right), \\
y_{2}^{\prime}=-y_{1}-2 y_{2} .
\end{array}\right.
$$

8. Find the arc-length parameter s (as a function of t) of the curve given by

$$
\vec{r}(t)=\left(e^{t}, e^{-t}, \sqrt{2} t\right), \quad 0 \leq t \leq 1 .
$$

What is the length of this curve?
9. Let $\vec{F}(x, y, z)=y \vec{i}+(5-z) \vec{j}+2 x \vec{k}$, and let C be the circle in the plane

$$
x+y+2 z=1,
$$

centered at the point $(2,-1,0)$ and whose radius is 2 . Assume that C is oriented counterclockwise when viewed from the origin. Find the line integral

$$
\int_{C} \vec{F} \cdot d \vec{r} .
$$

10. Let

$$
\vec{F}(x, y, z)=x^{2} \vec{i}-\vec{j}-2 y z \vec{k} .
$$

Is this vector field the curl of some vector field \vec{G} in some open region U in \mathbb{R}^{3} ? Justify your claim.
11. Let

$$
A=\left[\begin{array}{cccc}
0 & 2 & 1 & 1 \\
-1 & 1 & 0 & 2 \\
3 & 3 & 1 & -1 \\
0 & 0 & 2 & 1
\end{array}\right] .
$$

Find $\operatorname{det}\left(2 A A^{T}\left(A^{-1}\right)^{3}\right)$.

