9.3 – Double-angle and Half-angle Formulas

Learning Objectives

- Use Double-Angle Formulas to Find Exact Values
- **2** Use Half-Angle Formulas to Find Exact Values

1 – Use Double-Angle Formulas to Find Exact Values

Theorem – Double-Angle Formulas for Sine and Cosine

 $\sin(2\theta) = 2\sin\theta\cos\theta$

$$\cos(2 heta) = \cos^2 heta - \sin^2 heta$$

$$\cos(2\theta) = 1 - 2\sin^2\theta$$

$$\cos(2\theta) = 2\cos^2\theta - 1$$

The Double-Angle Formulas allow us to find the values of sine and cosine at 2x from their values at x. The formulas are immediate consequences of the Sum Formulas.

Example 1 – Use Double-Angle Formulas to Find Exact Values

→ < ≧ > <

If
$$\sin \theta = \frac{3}{5}$$
, $\frac{\pi}{2} < \theta < \pi$, find the exact value of:
(a) $\sin(2\theta)$ (b) $\cos(2\theta)$
Solution:

Example 2 – Use Double-Angle Formulas to Find Exact Values

If $\cos x = -\frac{2}{3}$ and x is in Quadrant II, find $\cos 2x$ and $\sin 2x$. Solution:

2 – Use Half-Angle Formulas to Find Exact Values

Theorem – Half-Angle Formulas for Sine and Cosine

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

where + or - sign is determined by the quadrant of the angle $\frac{\alpha}{2}$. The Half-Angle Formulas relate the values of sine and cosine at $\frac{1}{2}x$ to their values at x.

Example 3 – Finding Exact Values Using Half-angle Formulas

Use a Half-angle Formula to find the exact value of:

(a) $\cos 15^{\circ}$ (b) $\sin(-15^{\circ})$

Solution:

Example 4 – Finding Exact Values Using Half-angle Formulas

If
$$\cos \alpha = -\frac{3}{5}$$
, $\pi < \alpha < \frac{3\pi}{2}$, find the exact value of:
(a) $\sin \frac{\alpha}{2}$ (b) $\cos \frac{\alpha}{2}$

Solution:

Example 5 – Using a Half-Angle Formula

Find the exact value of $\sin 22.5^{\circ}$. **Solution**: