Learning Objectives

- Find the domain of a rational function
- Find intercepts of a rational function
- Sind the asymptotes of a rational function
- Graph a rational function using transformations

Definition – Rational Function A **rational function** is a function of the form

$$R(x) = \frac{p(x)}{q(x)}$$

where p(x) and q(x) are polynomial functions and $q(x) \neq 0$.

The **domain** of R(x) is the set of all real numbers, except those for which the denominator q(x) = 0.

In other words: The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.

How to Find the Domain of a Rational Function

Given a rational function, find the domain.

- 1. Set the denominator equal to zero.
- 2. Solve to find the *x*-values that cause the denominator to equal zero.
- 3. The domain is all real numbers except those found in Step 2.

Example 1 – Finding the Domain of a Rational Function

Find the domain of $f(x) = \frac{x+3}{x^2-9}$. Write your answer using interval notation. Solution:

Example 2 – Finding the Domain of a Rational Function

(a) The domain of R(x) = 2x² - 4/(x + 5) is the set of all real numbers x except -5; that is, the domain is {x | x ≠ -5}.
(b) The domain of R(x) = 1/(x² - 4) = 1/((x + 2))(x - 2)) is the set of all real numbers x except -2 and 2; that is, the domain is {x | x ≠ -2, x ≠ 2}.
(c) The domain of R(x) = x³/(x² + 1) is the set of all real numbers.
(d) The domain of R(x) = x² - 1/(x - 1) is the set of all real numbers x except 1; that is, the domain is {x | x ≠ 1}.

A closer look at 2(d)

Although
$$R(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{(x - 1)} = x + 1$$
,

It is important to observe that the functions

$$R(x) = rac{x^2 - 1}{x - 1}$$
 and $f(x) = x + 1$

are not equal, since the domain of R(x) is $(-\infty, 1) \cup (1, \infty)$ and the domain of f(x) is the set of all real numbers.

If $R(x) = \frac{p(x)}{q(x)}$ is a rational function, and if p(x) and q(x) have no common factors, then the rational function R(x) is said to be in **lowest terms**.

Note: The domain of a rational function must be found before writing the function in lowest terms.

Intercepts of Rational Functions

A rational function R(x) will have a y-intercept at R(0), if the function is defined at zero. A rational function will not have a y-intercept if the function is not defined at zero.

Likewise, a rational function R(x) will have x-intercepts at the inputs that cause the output to be zero. Since a fraction is only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of the rational function is equal to zero.

Example 3 – Finding the Intercepts of a Rational Function

Find the intercepts of
$$R(x) = \frac{(x-2)(x+3)}{(x-1)(x+2)(x-5)}$$
.
Solution:

3 – Find the Asymptotes of a Rational Function

We use **arrow notation** to show that x or f(x) is approaching a particular value.

Symbol	Meaning
$x \rightarrow a^{-}$	x approaches a from the left ($x < a$ but close to a)
$x \rightarrow a^+$	x approaches a from the right ($x > a$ but close to a)
$x \rightarrow \infty$	x approaches infinity (x increases without bound)
$x \rightarrow -\infty$	x approaches negative infinity (x decreases without bound)
$f(x) \to \infty$	the output approaches infinity (the output increases without bound)
$f(x) \to -\infty$	the output approaches negative infinity (the output decreases without bound)
$f(x) \to a$	the output approaches <i>a</i>

Example 4 – Analyzing the Graph of $f(x) = \frac{1}{x}$

Use arrow notation, the table from the previous and and the graph of f(x) slide to discuss: $x \to 0^-$, $x \to 0^+$ and the End Behavior of f(x).

Behavior of $f(x) = \frac{1}{x}$

When we look at $x \to 0^-$, $x \to 0^+$ we are talking about the **local** behavior near some number. Here the number is 0.

In section 5.2/5.3 we discussed **End Behavior** of Polynomial Functions. We can discuss End Behavior for Rational Functions too!

Vertical Asymptote

The local behavior of f(x) at x = 0 creates a **vertical asymptote**, which is a vertical line that the graph approaches but never crosses. In this example, the graph is approaching the vertical line x = 0 as the input becomes close to zero.

Vertical Asymptote

Definition – Vertical Asymptote

Let R(x) be a function. If, as x approaches some number c, the values $R(x) \to \infty$ or $R(x) \to -\infty$, then the line x = c is a **vertical asymptote** of the graph of R(x).

The vertical asymptotes of a rational function $R(x) = \frac{p(x)}{q(x)}$, in lowest terms, are located at the real zeros of the denominator q(x).

Theorem – Locating Vertical Asymptotes

The graph of $R(x) = \frac{p(x)}{q(x)}$, in *lowest terms*, has a vertical asymptote x = c if c is a real zero of the denominator q(x). That is, if x - c is a factor of the denominator q(x) of the rational function R(x), in lowest terms, the graph of R(x) has a vertical asymptote x = c.

Example 5 – Finding Vertical Asymptotes

Find the vertical asymptotes, if any, of the graph of each rational function.

∃ ⊳.

(a)
$$F(x) = \frac{x+3}{x-1}$$

(b) $R(x) = \frac{x}{x^2-4}$
(c) $H(x) = \frac{x^2}{x^2+1}$
(d) $G(x) = \frac{x^2-9}{x^2+4x-21}$

Solution:

Horizontal Asymptote

A horizontal asymptote, when it occurs, describes the end behavior of the graph as $x \to \infty$ or as $x \to -\infty$.

Definition – Horizontal Asymptote

Let R(x) be a function. If, as $x \to \infty$ or as $x \to -\infty$, the values of R(x) approach some fixed number L, then the line y = L is a **horizontal asymptote** of the graph of R.

In Math 195, we only study how to graph rational functions of the form $f(x) = \frac{ax + b}{cx + d}$. You will learn how to graph more complicated rational functions in Math 201.

Our process will be to use long division to express f(x) as $Q(x) + \frac{R(x)}{D(x)}$. In that form we can view the graph of f(x) as transformations of the graph of $\frac{1}{x}$. We simply identify the intercepts, the asypmtotes and then sketch the graph. Also we should make sure the state the domain and range of f(x) using interval notation.

Example 6 – Using Transformations to Graph a Rational Function

Sketch the graph of $f(x) = \frac{3x+7}{x+2}$. Label all intercepts and asymptotes on your graph. Solution:

Example 7 – Using Transformations to Graph a Rational Function

Sketch the graph of
$$f(x) = \frac{x-2}{x-3}$$
. Label all intercepts and asymptotes on your graph.
Solution:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・