5.1 – Quadratic Functions

Learning Objectives

- Recognize the graph of a quadratic function
- Find the axis of symmetry and vertex of a parabola
- Find the intercepts of a parabola
- Graph quadratic functions using properties
- Solve maximum and minimum applications

1 – Recognize the Graph of a Quadratic Function

Forms of Quadratic Functions

A quadratic function is a polynomial function of degree two. The graph of a quadratic function is a parabola.

The **general form of a quadratic function** is $f(x) = ax^2 + bx + c$ where a, b, and c are real numbers and $a \neq 0$.

The standard form of a quadratic function is $f(x) = a(x - h)^2 + k$ where $a \neq 0$.

The vertex (h, k) is located at

$$h = -\frac{b}{2a}, \quad k = f(h) = f\left(\frac{-b}{2a}\right)$$

Domain and Range of a Quadratic Function

The domain of any quadratic function is all real numbers unless the context of the function presents some restrictions.

The range of a quadratic function written in general form $f(x) = ax^2 + bx + c$ with a positive a value is $f(x) \ge f\left(-\frac{b}{2a}\right)$, or $\left[f\left(-\frac{b}{2a}\right), \infty\right)$; the range of a quadratic function written in general form with a negative a value is $f(x) \le f\left(-\frac{b}{2a}\right)$, or $\left(-\infty, f\left(-\frac{b}{2a}\right)\right]$.

The range of a quadratic function written in standard form $f(x) = a(x-h)^2 + k$ with a positive a value is $f(x) \ge k$; the range of a quadratic function written in standard form with a negative a value is $f(x) \le k$.

Write the quadratic function $f(x) = x^2 - 4x + 4$ in standard form. Identify the vertex, domain and range of the function.

Parabola Orientation

All graphs of quadratic functions of the form $f(x) = ax^2 + bx + c$ are parabolas that open upward or downward.

Parabola Orientation

For the graph of the quadratic function $f(x) = ax^2 + bx + c$, if

- a > 0, the parabola opens upward
- a < 0, the parabola opens downward

Determine whether each parabola opens upward or downward:

(a)
$$f(x) = -3x^2 + 2x - 4$$

(b)
$$f(x) = 6x^2 + 7x - 9$$

2 - Find the Axis of Symmetry and Vertex of a Parabola

Axis of Symmetry and Vertex of a Parabola

The graph of the function $f(x) = ax^2 + bx + c$ is a parabola where:

- the axis of symmetry is the vertical line $x = -\frac{b}{2a}$.
- the vertex is a point on the axis of symmetry, so its x-coordinate is $-\frac{b}{2a}$.
- the *y*-coordinate of the vertex is found by substituting $x = -\frac{b}{2a}$ into the quadratic equation.

For the graph of $f(x) = 3x^2 - 6x + 2$ find:

(a) the axis of symmetry (b) the vertex (h, k) and (c) the domain and range.

Example 4 – Finding the Inverse of a Quadratic Function When the Restriction Is Not Specified

Restrict the domain and then find the inverse of $f(x) = (x-2)^2 - 3$. **Solution**:

3 – Find the Intercepts of a Parabola

When we graphed linear equations, we often used the x- and y-intercepts to help us graph the lines. Finding the coordinates of the intercepts will help us to graph parabolas, too.

Find the Intercepts of a Parabola To find the intercepts of a parabola whose function is $f(x) = ax^2 + bx + c$: y-intercept x-intercepts Let x = 0 and solve for f(x). Let f(x) = 0 and solve for x.

Find the intercepts of the parabola whose function is $f(x) = x^2 - 2x - 8$.

We can use the discriminant to tell us how many x-intercepts there are on the graph.

Find the intercepts of the parabola whose function is $f(x) = 5x^2 + x + 4$.

4 - Graph Quadratic Functions Using Properties

HOW TO

To graph a quadratic function using properties.

- Step 1. Determine whether the parabola opens upward or downward.
- Step 2. Find the equation of the axis of symmetry.
- Step 3. Find the vertex.
- Step 4. Find the *y*-intercept. Find the point symmetric to the *y*-intercept across the axis of symmetry.
- Step 5. Find the *x*-intercepts. Find additional points if needed.
- Step 6. Graph the parabola.

Graph the function $f(x) = -x^2 + 6x - 9$ by using its properties. State the domain and range on your graph.

Graph the function $f(x) = x^2 + 4x + 5$ by using its properties. State the domain and range on your graph.

Graph the function $f(x) = x^2 + 4x + 5$ by using its properties. State the domain and range on your graph.

5 - Solve Maximum and Minimum Applications

MINIMUM OR MAXIMUM VALUES OF A QUADRATIC FUNCTION

The y-coordinate of the vertex of the graph of a quadratic function is the

- minimum value of the quadratic equation if the parabola opens upward.
- maximum value of the quadratic equation if the parabola opens downward.

MAXIMUM OR MINIMUM VALUE OF A OUADRATIC FUNCTION

The maximum or minimum value of a quadratic function $f(x) = ax^2 + bx + c$ occurs at

$$x = -\frac{b}{2a}$$

If a > 0, then the **minimum value** is $f\left(-\frac{b}{2a}\right)$.

If a < 0, then the **maximum value** is $f\left(-\frac{b}{2a}\right)$.

Find the minimum or maximum value of the quadratic function $f(x) = x^2 + 2x - 8$.