Learning Objectives

- Verify inverse functions.
- **②** Determine the domain and range of an inverse function.
- Sind or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axes.
- Sestrict the domain of a function to make it one-to-one.

Inverse Function

For any one-to-one function y = f(x), a function $f^{-1}(x)$ is an **inverse function** if f if $f^{-1}(y) = x$.

In other words, to have an inverse function f(x) must be one-to-one. Also if f has domain A and range B. f^{-1} has domain B and range A.

Think of f^{-1} as undoing what f has done.

Note: Keep in mind that $f^{-1}(x) \neq \frac{1}{f(x)}$.

Example 1 – Identifying an Inverse Function for a Given Input-Output Pair

If for a particular one-to-one function f(2) = 4 and f(5) = 12 what are the corresponding input and output values for the inverse function? Solution:

Inverse Function Property

Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies the following cancellation properties:

- $f^{-1}(f(x)) = x$ where x is in the domain of f
- 2 $f(f^{-1}(x)) = x$ where x is in the domain of f^{-1}

Any function f^{-1} satisfying these equations is the inverse of f

🔿 👘 ноw то

Given two functions f(x) and g(x), test whether the functions are inverses of each other.

- 1. Determine whether f(g(x)) = x or g(f(x)) = x.
- 2. If either statement is true, then both are true, and $g = f^{-1}$ and $f = g^{-1}$. If either statement is false, then both are false, and $g \neq f^{-1}$ and $f \neq g^{-1}$.

Example 2 – Verifying That Two Functions Are Inverses

Show that
$$f(x) = \frac{1}{x+2}$$
 and $g(x) = \frac{1}{x} - 2$ are inverses of each other.
Solution:

Domain and Range of Inverse Functions

The range of a function f(x) is the domain of the inverse function $f^{-1}(x)$.

The domain of f(x) is the range of $f^{-1}(x)$.

Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and write the domain of the original function as the range of the inverse.

∃ ► 4

Example 3 – Finding the domain and range of Inverse Functions

Consider the functions $f(x) = \frac{2x+3}{x-1}$ and $f^{-1}(x) = \frac{x+3}{x-2}$. Find the domain and range of both functions. Solution: Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or construct a complete representation of the inverse function in many cases.

Example 4 – Interpreting the Inverse of a Tabular Function

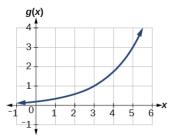
A function f(t) is given in a table below. The table shows the distance in miles that a car has traveled in t minutes. Find and interpret $f^{-1}(70)$.

t (minutes)	30	50	70	90
f(t) (miles)	20	40	60	70

Solution:

Example 5 – Evaluating a Function and Its Inverse from a Graph at Specific Points

The graph of a function g(x) is given below. Find g(3) and $g^{-1}(3)$.



Solution:

Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the original function is given as a formula y = f(x), then we can often find the inverse function by solving to get x as a function of y.

How to Find the Inverse of a One-to-One Function

• Write y = f(x)

Swap x and y to get
$$x = f(y)$$

3 Solve x = f(y) for y

• Write
$$y = f^{-1}(x)$$

Example 6 – Finding the Inverse of a Function

Find the inverse function of the function f(x) = 3x - 2. Solution:

Example 7 – Finding the Inverse of a Function

Find the inverse function of the function $f(x) = \frac{x+1}{x+5}$. Solution:

Example 8 – Inverting the Fahrenheit-to-Celsius Function

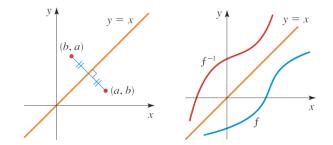
Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius temperature.

Remember
$$C = \frac{5}{9}(F - 32)$$

Solution:

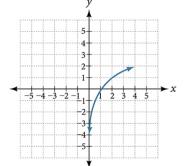
4 – Finding Inverse Functions and Their Graphs

The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.



Example 9 – Graphing the Inverse of a Function

Given the graph of f(x) below, sketch a graph of $f^{-1}(x)$. State the domain and range for both functions.



If a function is not one-to-one, it has no inverse function. Sometimes, though, an appropriate restriction on the domain of such a function yields a new function that is one-to-one. Then the function defined on the restricted domain has an inverse function.

Example 10 – Finding the Inverse of a Domain-restricted Function

Find the inverse of $f(x) = x^2$ if $x \ge 0$. Graph f and f^{-1} . Solution:

Given a polynomial function, restrict the domain of a function that is not one-to-one and then find the inverse.

- 1. Restrict the domain by determining a domain on which the original function is one-to-one.
- 2. Replace f(x) with y.
- 3. Interchange x and y.
- 4. Solve for *y*, and rename the function or pair of function $f^{-1}(x)$.
- 5. Revise the formula for $f^{-1}(x)$ by ensuring that the outputs of the inverse function correspond to the restricted domain of the original function.

(日)

Example 11 – Restricting the Domain to Find the Inverse of a Polynomial Function

Find the inverse function of f:

(a)
$$f(x) = (x-4)^2, x \ge 4$$
 (b) $f(x) = (x-4)^2, x \le 4$

Solution:

Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If we want to find the inverse of a radical function, we will need to restrict the domain of the answer because the range of the original function is limited.

Given a radical function, find the inverse.

- 1. Determine the range of the original function.
- 2. Replace f(x) with y, then solve for x.
- 3. If necessary, restrict the domain of the inverse function to the range of the original function.

Example 12 – Finding the Inverse of a Radical Function

Restrict the domain of the function $f(x) = \sqrt{x-4}$ and then find the inverse. **Solution**: