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18 The Effects of Randomness

Grampa: Put it all on 41.  [nudges Homer] I've got a feeling about
that number.
Roulette man: The wheel only goes to 36.
Grampa: Okay, put it all on 36. [nudges Homer] I've got a feeling
about that number.

From: The Simpsons

18.1 Introduction 

In Part I we discussed mathematical models of population growth that were based on continuous
variation over time.  Differential equations were the principal tool in such investigations.  In the
last chapter we considered models that can be used to describe growth in discrete time intervals.
In both cases, however, our models are deterministic – the initial conditions and the mathematics
of the model determine the future development of the system.  Although random-like behavior
may appear in these models, the “randomness” is intrinsic and is not due to truly random external
effects.  Of course, one could argue that external randomness is only a reflection of our ignorance.
A larger, more complicated, model could incorporate deterministic models of climate change,
geologic variation and other myriad influences on populations.

Whether such grand models will ever reach fruition is unknown.  Yet even if they do, there is no
doubt that they will exhibit the “deterministic chaos” that we have already seen in some of our
simple discrete logistic models.  In such cases, the models will only be useful in making
probabilistic predictions about the future.  However, without waiting for such grand theories we
can study the effects of randomness in a much more simplified setting.  Namely, all of our
deterministic population models contain parameters such as the growth rate r, the carrying capacity
K, competition coefficients, etc.  In our treatment, we have assumed these quantities were either
fixed throughout the time period under study, or varied in some predictable way (for example,
density dependent growth).  We can model the effects of external randomness on our system by
subjecting these coefficients to random change over time.  In implementing this program, we will
restrict our attention to discrete systems, as it is easier to carry out simulations in that context.  As
you will see, our work in probability theory will help us to interpret and understand the results.

18.2 Environmental Variation

As in most scientific investigations, it is always best to begin by working with the simplest
examples.  Although often inaccurate in substance, these often can be analyzed completely thereby
clarifying relevant features in more realistic models.  Recall that our simplest model of discrete
population growth is given by the difference equation 1t tN rN+ = .  According to Theorem 17.3
(where we use k instead of r for the coefficient on the right side), the population will grow
exponentially if 1r >  and will exhibit exponential decay when 1r < .  The difference equation is
sometimes referred to as a production equation, since it specifies how many members of the
population are produced in the next time period.  The parameter r then measures the per capita
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production.  When 1r >  each current member of the population produces more than one new
member, so the population grows.  When 1r <  the reverse happens.

In the discrete model in Chapter 17 we considered that r was a constant.  However, r is clearly
dependent on environmental factors and as these change the value of r may change as well.
Keeping with our theme of simplicity, let’s suppose that our population encounters two types of
environmental conditions, “good years” and “bad years”.  In the good years the per capita
production rate is 2r = , while in the bad years the rate is 1

2r = .  Of course, whether a year is a
good or bad one is not predictable.  For starters, we will assume that the two are equally likely.
Thus, whether a year turns out to be good or bad amounts to tossing a fair coin.  We can then give
the following probability distribution for the per capita production coefficient r.

Values of r 2 1
2

Probabilities 0.5 0.5

Table 18.1

Let’s see how to combine this probability model with our deterministic growth model 1t tN rN+ = .
Notice that we are trying to combine the simplest model for population growth with the simplest
probabilistic model.

Example 18.1: Suppose our initial population is 0 100N = .  Compute values for 1 2 3 4, , ,N N N N ,
and 5N , if the coefficient r is selected randomly each year according to the probability distribution
given in Table 18.1.

Solution:

We use Excel to select the values of r using its random number generator (see the Tech Notes to
Chapter 13 for details).  We obtained the sequence 2, 2, 0.5, 0.5, 0.5 (two good years followed by
three bad ones).  In each year starting with the first we use the value of r given by this sequence to
generate the next value of N.  We obtain the following results:

1 02 200N N= = 2 12 400N N= = 1
3 22 200N N= = 1

4 32 100N N= = 1
5 42 50N N= =

!

Of course, if we had done the simulation again, we might very well have obtained a different
result.  In fact, the population size after five years will be a random variable, taking on a certain
number of possible values each with a definite probability.  For example, it’s clear that the largest
possible value the population could reach is 5

02 3200N = , if each of the 5 years turned out to be
good.  It is not hard to find the exact probability distribution for the population after 5 years.
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Example 18.2: Find the probability distribution for 5N , the fifth year population, assuming the
initial population was 0 100N =  and the per capita production coefficient r is selected according to
the probability distribution Table 18.1.

Solution:

Mathematically, to find the next year’s population we simply multiply the previous population by
the new random r.  After a specific number of years, the final result depends only on how many of
the multiplicative factors r are equal to two and how many are equal to ½.  In particular therefore,
the population size 5N  depends only on the number of good and bad years that are experienced
during the 5 years. The number of good years follows a binomial distribution with 5n =  and
success parameter 1

2p = .  The probability distribution is given below (see Section 13.3 and Table
B.1):

# Good Years k 0 1 2 3 4 5

Probability ( )51
5 0 2

.031
C

=
( )51

5 1 2

.156
C

=
( )51

5 2 2

.313
C

=
( )51

5 3 2

.313
C

=
( )51

5 4 2

.156
C

=
( )51

5 5 2

.031
C

=

Table 18.2

From this we can derive the probability distribution for the population 5N .  If there are k good

years then there will be 5 k−  bad years.  The population will be multiplied by ( )51
22 kk − .  The

probability distribution for 5N  is then obtained by replacing the values in the top row of Table

18.2 by the factors ( )51
022 kk N− .  This gives:

Population size 5N
( )51

02

3.125
N

=
( )41

022
12.5

N
=

( )32 1
022

50
N

=
( )23 1

022
200

N
=

( )4 1
022

800
N

=

5
02

3200
N

=

Probability ( )51
5 0 2

.031
C

=
( )51

5 1 2

.156
C

=
( )51

5 2 2

.313
C

=
( )51

5 3 2

.313
C

=
( )51

5 4 2

.156
C

=
( )51

5 5 2

.031
C

=

!!!!

As we discussed in Chapter 13, the probability histogram for a random variable provides a useful
visualization.  Unfortunately, when we attempt to graph the histogram for the possible values of

5N  we have to face the uncomfortable fact that the values of 5N  are spread over approximately
three orders of magnitude.  We have seen in Section 9.5 that plotting such information on a linear
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scale does not give a useful representation.  Rather, we will get a more useful figure if we consider
as our random quantity the logarithm of the population.  For convenience we use base 10 logs:

Example 18.3: Construct the probability histogram for the random variable 10 5log N .

Solution:

We can use Excel to first construct the probability histogram for 5N , following the Tech notes in
Chapter 13.  The only modification we must make is that we should use a scatter plot for the
probability histogram, rather than a bar chart.  Excel’s bar chart only plots the horizontal axis
categorically rather than numerically, and here there are too many gaps between values for us to
add empty positions as placeholders.  We obtain the histogram shown on the left below:
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The histogram of 10 5log N  on the right was obtained by computing 10 5log N  and using the same
probabilities on the vertical axis.  The pattern for the values of 10 5log N  resembles the histogram of
the binomial distribution for 5n =  and 0.5p = , but with a slight rescaling and translation of the
horizontal axis.  In fact the latter histogram is:

Binomial Prob. Histogram, n = 5, p = .5
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which clearly resembles the histogram for 10 5log N . !!!!
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Based on this limited exploration, we can make some conjectures about what will happen if we
extend the model over a longer time period.  When we use random elements in a mathematical
model, we say the model is stochastic.  Thus, we make the following conjecture for our stochastic
model:

Conjecture 18.1: If for each t the per capita production coefficient r is selected according to the
random variable given by Table 18.1 then the common logarithm of the population at time t will
follow a rescaled binomial distribution.  In particular, 10log tN  will have an approximately normal
distribution. !

Before we verify this conjecture, we will study it empirically by looking at the distribution of
values of 10 50log N  found from a simulation.

Example 18.4: Simulate 100 replications of the stochastic population model 1 1t t tN r N+ += , where

1tr +  is a value from the random variable described by Table 18.1, 0,1, 49t = … , and 0 100N = .  Plot
several trajectories of 10log tN  on the same graph and plot a histogram for the 100 values of

10 50log N .

Solution:

The graph in the left panel shows four trajectories for 10log tN .  The right panel shows the
distribution of the values for 10 50log N  obtained from the 100 replications.  The histogram graph is
appropriately “mound-shaped,” consistent with the conjecture.
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Figure 18.1
!!!!

Notice that the vertical scale on the trajectory graph in Figure 18.1 has logarithmic scaling.  This
means that while the tick marks refer to the values of N rather than their logarithms, it is powers of
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10 that are equally spaced, rather than multiples of 10.  There is of course an enormous variation in
the range of possible values of 50N .  In fact, the histogram shows that the base 10 logarithm of the
population 50N  can range from about 3−  to 7, so 50N  can range from about 310−  to 710 .  Of
course, small values of N are only mathematical fictions.  The modeled population has ceased to
exist.

Before we consider proving and amplifying the results in Conjecture 18.1, we perhaps ought to
consider what this excursion into stochastic models has revealed.  Recall that we started with a
deterministic model 1t tN rN+ =  that leads either to a population explosion or extinction.  The
simple introduction of randomness in the production factor r gives us a model which may behave
in either way, depending on chance.  A reasonable question to ask here is how likely is it that an
initial population will become extinct under this scenario, where extinction means that the
population drops below some critical level.  Is a large population more ecologically secure against
such external variation than a smaller one?

The answer to these questions is provided by the following Theorem.  The proof uses properties of
the binomial distribution discussed in Chapter 13.

Theorem 18.1: Suppose tN  follows the stochastic model 1 1t t tN r N+ += , where 1tr +  is a random
variable with distribution given by Table 18.1.  When t is large, the quantity 10log tN  will have an
approximately normal distribution with expected value 10 10 0(log ) logtE N N=  and standard

deviation 
10log 10(log 2) 0.3

tN t tσ = ≈ .

Proof:

We have 1 1 0N r N= , 2 2 1 2 1 0( )N r N r r N= = , and more generally 1 2 1 0t t tN r r r r N−= " .  Taking logs of
this equation gives

10 10 10 1 10 0log (log log ) logt tN r r N= + + +" . (18.1)

Suppose there are k good years, and therefore t k−  bad ones.  Then the quantity
10 10 1log logt tD r r= + +" , which measures the “drift” of the log  population through time t, has

value

( )1
10 10 10 10 10 102log 2 ( ) log log 2 ( ) log 2 (2 log 2) log 2k t k k t k k t+ − = − − = − .

Moreover, the probability that tD  has the latter value is precisely the chance that k good years will

be selected out of the t years.  This probability is just the binomial probability ( )1
2

t
t kC .  If we let

1
2,tX X=  denote the binomial random variable with t trials and probability 1

2  of success, then we
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have shown that the random variable tD  satisfies tD aX b= + , where 102 log 2a = , and

10log 2b t= − .  Therefore, we have from (18.1) that

10 10 0log logtN aX b N= + + . (18.2)

A relationship between random variables of the sort given by (18.2) is similar to relationships
between data sets that we examined in the exercises of Chapter 7 (see Exercise 5 in particular).
The results discussed there apply as well for random variables, so that

( ) ( ) and  if 0,
( ) ( )  and 

aX X

Y b Y

E aX aE X a a
E Y b E Y b

σ σ
σ σ+

= = >
+ = + =

. (18.3)

Since X has a binomial distribution, the formulas for the mean and standard deviation of the
binomial distribution give 1

2( )E X np t= =  and 2
t

X npqσ = = .  Combining this result with
(18.3) gives:

10
10 10 0 10 10 0 10 0

(2 log 2)(log ) ( ) log log 2 log log
2t

tE N aE X b N t N N= + + = − + = (18.4)

and

10

10
log 10

(2 log 2) (log 2)
2tN X

ta tσ σ= = = . (18.5)

This establishes the formulas for the mean and standard deviation of 10log tN .  Since X has a
binomial distribution, its distribution is approximately normal when the number of trials t is large.
Since 10log tN  involves only a stretching and translation of X, it will also have a bell-shaped
density curve that is approximately normal. !!!!

Theorem 18.1 is a powerful and important result.  To illustrate its consequences consider the
following example.

Example 18.5: Using Theorem 18.1 estimate the likelihood that when 0 100N =  the population
will be extinct after 50 generations.  (This is the scenario plotted in Figure 18.1.).

Solution:

We take extinction to mean that the population 50 1N <  or in terms of logarithms, 10 50log 0N < .
After 50 generations the random quantity 10 50log N  will have a normal distribution with mean

10 0log 2N =  and standard deviation 10(log 2) 50 2.13σ = ≈ .  We can now use z scores to compute
the probability of extinction in generation 50t = .  We want
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10 0
10 50

0 log 2(log 0) ( ) ( ) 17%
2.13

NP N P Z P Z
σ

− −< = < = < ≈

This agrees fairly closely with the frequency distribution given in Figure 18.1.  Note, however, that
this is only a lower bound on the extinction probability.  Some trajectories that were “knocked out”
before 50t =  may have recovered mathematically, even though in reality they should have been
eliminated.  Thus the 17% is only a lower bound on the desired probability.  In fact, more
advanced methods show that the actual extinction probability is about double this bound, or 34%.
!!!!

Notice that because the expected value of 10log tN  is constant for all t, but the standard deviation

grows approximately as .3 t , as time progresses a population of any initial size will be at greater
and greater risk of extinction.  Indeed, it may be shown that extinction is inevitable under this
model.  Since extinction seems to occur rather rarely (except during certain known geologic
periods), this model must be overstating the effects of randomness.  In particular, the assumption
that good and bad years are equally likely seems to imply that the environment is more volatile
than seems to be the case, or that species are only adapted to a rather narrow spectrum of
environmental conditions.  In the exercises we consider modifications to the model.

18.3 Demographic Variation

In Section 18.2 we considered how the basic discrete time exponential model 1t tN rN+ =  is
affected when the per capita production coefficient is subjected to random variation.  The variation
we considered was environmental in the sense that all members of the population were equally
affected.  The per capita production number r changed for all members of the population.  This
type of change affects both large and small populations, though the latter may be endangered more
quickly.

We can incorporate demographic variation into our model by considering the reproductive fate of
each member of the population as a random variable.  Some individuals may produce no offspring,
others one or two, etc.  The quantity r in our basic model 1t tN rN+ =  should be viewed as an
average or mean production of individuals.  Again, let’s begin with an easy example and try to
understand some of its features.  So we will assume that individuals either have zero or two
offspring with equal probability.  Letting X denote the number of offspring for an individual we
are assuming the following probability distribution for X:

X 0 2

( )P X x= 0.5 0.5

Table 18.3
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Example 18.6: Suppose we start with an initial population of 0 3N = .  Compute values of 1 2, ,N N
and 3N  if the number of offspring of each individual is selected randomly according to Table 18.3.

Solution:

We first draw three values for the number of offspring of the initial three individuals.  Excel
generated the values 2, 0, and 0.  Therefore, 1 2N = .  We continue by selecting the number of
offspring for each individual in the first generation.  Excel generated the values 2, and 0, so

2 2N = .  For each of these two members we select the random number of offspring according to
Table 18.3.  We obtained the values 2, and 2, so that 3 4N = .  We could continue, generating 4
more values for the offspring of third generation, etc. !!!!

Notice that the expected value of our random variable X is simply one.  If the population were
large to begin with, on average every member would have one offspring and we would expect the
population size to remain more or less constant.  In fact, the population size fluctuates quite a bit,
but the large initial size provides a substantial cushion against these stochastic shocks.  The
population can persist for quite a long time, although extinction via random variation is not
impossible.  Below are four trajectories showing population variation with initial populations of

0 75N = .  Notice that two of the trajectories result in extinction after 100 or 150 generations.

Demographic Stochasticity: N0 = 75

0

50

100

150

200

250

0 50 100 150 200 250
t

N
t

Demographic Stochasticity: N0 = 75

0

50

100

150

200

250

0 50 100 150 200 250
t

N
t

Demographic Stochasticity: N0 = 75

0
20
40
60
80

100
120
140

0 50 100 150 200 250
t

N
t

Demographic Stochasticity: N0 = 75

0

50

100

150

200

0 50 100 150 200 250
t

N
t

Figure 18.2
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A small population is much more susceptible to extinction through demographic stochasticity.  For
example, the graphs below show four trajectories in which 0 10N = .
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If the population is lucky and has an initial rapid increase it may of course persist for a
considerable time, as if it started with a large population.  However, in most cases a small
population is doomed to rapid extinction.  These examples illustrate an essential difference
between environmental and demographic stochasticity.  Random changes in the environment affect
all population members.  Large populations may have only a marginal factor of safety against such
effects, especially if they are prolonged.  On the contrary, random demographic variation caused
by individual reproductive differences is unlikely to affect the overall viability of a large
population.

18.4 Tech Notes

We give some ideas to the reader as to how to carry out the simulations presented in this chapter.
The techniques rely heavily on Excel’s random number generator, described in the Tech Notes in
Chapter 13.

Example 18.7: Set up an Excel spreadsheet to simulate the stochastic environmental model
discussed in Section 18.2.

Solution:
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You need to compute the random numbers in advance.  It is best if they are stored on a separate
sheet, since they are uninteresting and take up useful real estate.  If you are using your own
random variable for the quantity r, enter the probability distribution table in the first two columns
of Sheet1, with headings for the values and probabilities.  Use Excel’s random number generator to
generate values of your random variable on Sheet2.  For example, if you want to do 10 replications
each one going through 50 generations you will need to generate 10 columns (# of variables), each
with 50 values.

To create a simulation of 50 generations you might first enter the numbers 0 to 50 in column A of
sheet 1.  Next, enter the initial population size in a separate cell.  You will refer to this by
reference, so that changing the initial size does not involve redoing the entire worksheet.  The
basic formulas are quite straightforward and follow the principles for writing ordinary difference
equations.  Figure 18.3 below shows the beginning of this table.  The entries “Sheet2!B5” etc. refer
to the random numbers on Sheet2.  Each row after row 5 is obtained from the previous one by
multiplying the old population by the next random number in the appropriate column from Sheet 2.

A B C A B C

1 Init N 100 1 Init N 100

2 2

3 3

4 0 100 100 4 0 =$C$1 =$C$1

5 1 50 50 5 1 =$C$1*Sheet2!A5 =$C$1*Sheet2!B5

6 2 100 25 6 2 =B5*Sheet2!A6 =C5*Sheet2!B6

Figure 18.3
!!!!

Example 18.8:  Set up an Excel spreadsheet to simulate the stochastic demographic model
discussed in Section 18.3.

Solution:

This is more difficult (and less efficient) to do (without programming) because the action required
in a given step depends in a more complicated way on the results obtained in the previous step.  As
in Example 18.7, you first must generate values of the random variable that characterizes the birth
demographics.  If your initial population is greater than 50 and you wish to trace the trajectory
over 100 generations then you may easily need 10,000 values of the random variable!

The basic idea is of course quite simple.  If the initial population is say,10, we have to add the first
ten values in the column of random variables on Sheet2.  This gives 1N .  We must then add the
next 1N  values in the random variable column to get 2N , then add the next 2N  values, etc.  Now
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the SUM() function can add the random numbers for us, provided we can specify the range.  Since
this range varies, we need a way of constructing it at each step. Excel has one worksheet function
that allows the user to construct ranges.  This is the OFFSET() function.  The reader who wishes to
understand the formulas that follow should read the help page on that function.  Basically, we use
the OFFSET function to tell Excel what range of random numbers must be added at each step.  The
formulas are shown below.  Pay close attention to the mix of absolute and relative references.  The
entries referred to on Sheet2 are random numbers generated according to the distribution in Table
18.3.  The last statement in A4 can be copied to all cells below and then column A (except for A1)
can be duplicated for as many replications as is desired.

A A

1 10  (initial N) 1 10

2 10 2 =$A$1

3 6 3 =SUM(OFFSET(Sheet2!A$1,0,0,A2,1))

4 10 4 =SUM(OFFSET(Sheet2!A$1,A2,0,A3,1))

5 8 5 =SUM(OFFSET(Sheet2!A$1,SUM(A$2:A3),0,A4,1))

!!!!

18.5 Summary

Population models can potentially gain greater realism by incorporating randomness.  This can be
done by modifying deterministic models so that one or more parameters vary randomly.  The
selection of appropriate random models is an important aspect of such investigations.  The
resulting models can be used to estimate the likely development of the system, as well as the
possible variability in outcomes.  Such probabilistic models have been used in developing
harvesting protocols for fisheries and other natural resources where supply depends on
environmental conditions that are as yet unpredictable.  Many of the probabilistic models cannot
be analyzed in any explicit manner.  Conclusions about these models are often made on the basis
of extensive computer simulation using random number generators.

The expansion of human economic activity has shrunk and partially fragmented many ecosystems.
As a result, many populations live in environments in which they are much more isolated than they
were in the past.  The study of such isolated communities has therefore taken on renewed interest
to ecologists.  In small communities, stochastic variation in population size can play an important
role in population survival.  Similar effects occur in the gene pool, with the result that genetic
variation may be lost solely because of the relatively greater variability of small samples.
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18.6 Exercises

1. Suppose that in the stochastic population model 1t tN rN+ = , the production coefficient r has the
following distribution:

r 2 1
2

Probability of r 0.75 0.25

Table 18.4
In such a model, “good years” occur more frequently than “bad years”.

a) Suppose the first four values of r selected from this distribution are 2, 1
2 , 2, and 2.  If the

initial population is 50, find 1 2 3, ,N N N  and 4N .

b) Determine the probability distribution for 4N  and 10 4log N ?  Is either of these symmetric?
Contrast with the example based on Table 18.1.

c) What is the expected value of 4N  and 10 4log N ?  What is the standard deviation of 4N  and

10 4log N ?

d) Show that 10log tN  satisfies (18.2), where X is a binomial distribution with t trials and
probability of success 3

4p = .

e) Using d) show that ( )1
10 10 10 02(log ) log 2 logtE N t N= + .  Explain the significance of the

contrast between this result and (18.4).

f) Using d) show that 
10log 10

3 log 2 .26
2tN t tσ = ≈ .  What do the results in e) and f) imply

about the likelihood of extinction based on this model?  Explain.
383

g) Generate and graph a number of trajectories of 10log tN  using values of r drawn from the
distribution in Table 18.4 for 0,1,2 20t = " .  Use initial values 0 10N = , 20, and 40.  Does
extinction ( 1tN < ) ever occur in your examples?  Are the results in line with your
predictions in f)?

2. Suppose good years and bad years occur equally often, but good years are relatively more
productive than the bad years are detrimental.  For example the distribution for r might be

r 3 1
2

Probability of r 0.5 0.5

Find 10(log )tE N  and 
10log tNσ  using this model for r.  What do your results imply about the

possibility of extinction?
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3. a) Compute the mean and standard deviation for the random variable defined by Table 18.3.

b) Suppose the birth demographics are given by the following distribution, where X represents
the number of offspring for an individual:  Find ( )E X  and Xσ .

X 0 1 2

( )P X x= .25 .5 .25

Table 18.5
c) Suppose we consider demographic growth models based on the distributions in Table 18.3

and Table 18.5.  Which one do you think will have a greater tendency to produce extinction
in small populations?  Justify your answer.

d) Create several simulations for the demographic models based on Table 18.3 and Table

18.5.  Using small initial values for N, try to confirm your answer to c).

4. a) Suppose that a population has an average per capita production of 2.  It is then plausible to
consider as a deterministic model the exponential growth equation 1 2t tN N+ = .  Why is the
Poisson distribution X (see sections 13.3 and 14.2) with 2λ =  a reasonable choice for the
individual birth demographics?
b) Suppose 0 4N = .  Use Excel to generate enough values of the Poisson distribution X
defined in a) so as to compute 1 2 3, ,N N N , and 4N .

c) Following the procedure in Example 18.8, construct trajectories for 0,1, 25t = " , using the
384

initial conditions 0 5N = , with the birth demographics described by Poisson distribution in
part a).  Repeat with 0 10N =  and contrast the behaviors in the two cases.
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