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16 Statistical Inference: Hypothesis Tests
Judge: Mr. Hutz we've been in here for four hours.
Do you have any evidence at all?
Hutz: Well, Your Honor. We've plenty of hearsay and conjecture.
Those are kinds of evidence.

From: The Simpsons

16.1 Introduction

In Chapter 15 we considered inference procedures that relied on estimation.  In some situations,
however, we want our statistical methods to provide a more direct guide for decision making.  In
such cases, confidence interval estimation may not be the most suitable form in which to present
the statistical information.  Hypothesis testing provides a useful alternative.

Hypothesis testing rests on a simple logical foundation, though with an important modification.
Imagine we have assembled a group of people from different areas of the world. We want to make
some determination of their origin by inquiring about their local weather. Consider for example the
following true assertion: “In Barbados it never snows.”  From this we can deduce that if someone
claims to have seen snow fall in his homeland, he cannot be from Barbados.

We can formulate this reasoning abstractly.  We are given that a statement S S S S of the form “If H
occurs then C is impossible” is true. In our example, H would be the statement that the individual
comes from Barbados.  The condition C would be that you see snow fall. From the truth of S S S S we
can infer that the occurrence of C implies that H must be false, since otherwise we would never
have seen event C..  We can use this reasoning to create a decision procedure.  Whenever outcome
C is observed, we will reject hypothesis H, thus asserting it to be a false hypothesis.  From our
assumptions, whenever the hypothesis H is actually true, this decision process can never falsely
reject it, since outcome C will never be observed when H is actually true.  In other words, when H
is true there is zero chance of erroneously rejecting it.

On the other hand, when H is false (i.e., in our example the unknown location is not Barbados) we
would like our decision procedure to reject H with high probability.  To actually assess that
probability we need more information regarding possible alternatives.  For example, if we knew
that many of the people in our group were from N.Y. then they would have likely observed snow
and the procedure would have a high probability of correctly rejecting Barbados as the unknown
location.  We say that the test has a high power to distinguish between the original hypothesis and
this particular alternative. On the other hand, if a plausible alternative original location were
Jamaica, then there is little chance that the decision process will lead you to reject the Barbados
hypothesis, since it never snows on Jamaica either. In this case, the test has little power to
distinguish the two alternatives and if that distinction is important, this is a poor test to use.

Actual statistical hypothesis testing differs in one important respect from the simplified scenario
described above.  In most cases, when the hypothesis H is true, the outcome C whose occurrence is
the basis for the rejection decision actually has a small chance of occurring.  In other words, there
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will be a small chance, called the significance level, of erroneously rejecting a true hypothesis.
Hypothesis testing is concerned with designing tests that have small significance level and also a
high power to discriminate between the assumed hypothesis and plausible alternatives.  We will
now look more closely at how this is done for a number of common statistical scenarios.

16.2 General Notions

We will designate the hypothesis we wish to examine by the letter 0H .  0H  is called the null
hypothesis.  The name arises because often 0H  simply asserts that there is no difference between
two competing claims. We attempt to test the validity of the hypothesis 0H  by performing an
experiment whose outcome C is unlikely to occur when 0H  is true.  We use this outcome as a
decision criterion.

Definition 16.1: We say that outcome C is a decision criterion for hypothesis 0H  if the occurrence
of C leads us to reject hypothesis 0H . When outcome C is not observed we do not reject
hypothesis 0H .!

Since outcome C has a small chance of occurring when 0H  is true, the rejection of the hypothesis
cannot be interpreted as an unequivocal assertion that 0H  is false. Rather, we are expressing a
judgment based on a certain weight of evidence.  Two numbers measure the quality of this
evidence and the value of C as a decision criterion. We want a small probability of rejecting a true
hypothesis and a high probability of rejecting a false one. We have already introduced these
numbers informally and we now state more precise definitions.

Definition 16.2: The significance level of the decision criterion C for hypothesis 0H  is the
probability that C will occur when 0H  is true.  We denote the significance level by α  (Greek
letter “alpha”). !

On the other hand, we are also concerned that when 0H  is false and some alternative aH  is true,
the outcome C should occur with high probability, so that the false hypothesis will be rejected.

Definition 16.3: The power of the decision criterion C for hypothesis 0H  versus an alternative
hypothesis aH  is the probability that C will occur when aH  is true. We denote the power of the
test (for a specific alternative) by γ  (Greek letter “gamma”). !

Let’s compute these quantities in a simple example.
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Example 16.1: Suppose we have a coin and we want to know whether the coin is fair, i.e. whether
there is a 50% chance that it will land heads. Our decision criterion will be based on the number of
heads obtained when the coin is tossed 25 times. Since a fair coin is unlikely to produce a large or
small number of heads, we take as our decision criterion the event C that the number of heads is ≥
17 or ≤  8. Thus, if C occurs we will reject the null-hypothesis 0H  that the probability of heads is
0.5.  Find

a) The significance level α of this decision criterion and

b) the power of this decision criterion to detect a coin with 0.6p =  and one with .8p = .

Solution:

a) The significance level is the probability that the decision criterion C occurs when the coin is
fair.  We can easily find this from the tables for the binomial distribution.  Indeed from section
B.2 we find that with 25n =  trials the probability of C is

(#  heads 8) (#  heads 17) .054 .054 .108P P≤ + ≥ = + = .

Hence, .108α = .  This means that the outcome C has about a 10% chance of occurring, even
for a fair coin.  Since the occurrence of C leads us to reject the null hypothesis, about 10.8% of
fair coins would be incorrectly rejected by this procedure.

b) The power of this test to correctly reject the null hypothesis when it is false depends on the
alternative. If the true probability of heads for the coin were 0.6p =  then from section B.2 we
find that the likelihood of the decision criterion C occurring is

.6 .6(#  heads 8 | ) (#  heads 17 | ) .004 .274 .278p pP P= =≤ + ≥ = + = .

If the true p is 0.8 then a similar calculation yields a power of 0.953γ = .  Thus the test is
extremely likely to detect very biased coins, but much less likely to rule out moderately biased
ones. !!!!

Some comments are in order regarding the decision criterion and the two probabilities associated
with it.

•  Nature of the decision criterion:

Since we have no prior knowledge indicating whether a biased coin will produce an excess or a
deficit of heads, we must adopt a decision criterion that is sensitive to either large positive or large
negative deviations from the hypothesized 50/50 balance.  Such a statistical test is called two-
sided.  In some situations a decision criterion will only be triggered by exceptional outcomes in
one direction from the assumed hypothetical state.  Such tests are therefore called one-sided.  The
principles for constructing these are very similar to those required in two-sided tests, though it is
not always a clear-cut decision as to which is appropriate.
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•  Selecting the decision criterion:

Since we want the decision criterion C to have a low probability of occurrence when the null
hypothesis 0H  is true, the outcomes we select for C must come from the tail(s) of the distribution
for the number of heads.  The farther out in the tails we select the outcomes in C, the smaller α ,
which of course is desirable.  Unfortunately, the same process will reduce the power of the test, for
any given alternative.  This is illustrated in the figure below.  The top panels (a) and (b) show the
probability distribution of heads for 25 tosses of a fair coin.  In each case, the shaded region
specifies a decision criterion C. In the bottom panel we show the distribution of heads for 25 tosses
of a moderately biased coin ( .6p = ).  The shaded regions in (c) and (d) use the same decision
criteria as (a) and (b), respectively. As we move from (a) to (b) in the top panels α  decreases. At
the same time, the area of the shaded regions in the lower panels also decreases, implying a
decrease in the power to detect this specific alternative.

Decision Criterion (a) : H0 = .5, α α α α = .108

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16 18 20 22 24

 # heads

pr
ob

Decision Criterion (b) : H0 = .5, α α α α = .044
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Decision Criterion (c) : Ha = .6, γ γ γ γ = .278
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Decision Criterion (d) : Ha = .6, γ γ γ γ = .155
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Figure 16.1

•  Meaning of α :

In Example 16.1 we found that the significance level of the decision criterion was 0.108.  The
significance level is often misinterpreted. Here are two common misconceptions:!!
!!
322
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Misconception i) Hypothesis tests having, say, 0.1α =  reject about 10% of all null
hypotheses.  This is only true when examining known true hypotheses. If the test of Example
16.1 were applied to a collection of fair coins we would indeed reject about 10% of these.
However, if all of the tested coins had a probability of heads of 0.8p =  then we have seen that
95% of them will be rejected.  In general, we will not know the mix of true and false null
hypotheses that we are examining so the exact percentage that will be rejected cannot be
determined.

Misconception ii) The significance level measures the chance that your decision is incorrect.
Again, this is only true provided we add the words, “when examining true null hypotheses.”
For example, if we are examining 1000 coins all of which have a 0.6 probability of tossing a
head then, according to Example 16.1, we will correctly reject about 278 of these.  The
remaining 722 will not be rejected, though they should have been.  If we regard non-rejection
as a decision, then the rate of incorrect decisions would be 72%.  In general, if we are testing
coins with a specific alternative bias denoted by aH , then the fraction of incorrect decisions
will be 1 γ− , where γ is the power of the decision criterion when the alternative hypothesis

aH  is valid.

Although the significance level is a well-defined probability, it measures a probability that has no
practical interpretation.  After all, if one knows that a certain null hypothesis is true, one would
never bother to test it!  From the perspective of hypothesis testing the significance level provides a
quantitative means of weighing the statistical importance of the experimental results.  Indeed, the
smaller the significance level then the greater is the weight to be accorded a result that leads to
the rejection of 0H .  For example, when we use a test with significance level .05α =  the decision
criterion C has a 5% chance of occurring when 0H  is true.  Since we may have other grounds for
believing that a particular 0H  is true, in practice, we may sometimes regard a statistical decision to
reject 0H  with 0.05α =  as insufficient evidence against the proposed model.  On the other hand,
when our experiment results in an outcome C with a significance level of 0.01, then in continuing
to accept 0H  you would need to argue against an event that rarely occurs, but which has now been
seen.  If there is compelling evidence to the contrary one may occasionally dismiss such a
statistical result as a coincidence, but to do so consistently is irrational.

If there is a need for greater moral certainty (“guilt beyond a reasonable doubt”) then we can adopt
a more stringent decision criterion with a smaller α .  The price for this will be a decrease in the
power of the test to detect differences from the hypothesized state.  Unfortunately, such differences
may be of great practical interest.  It is possible to have a significance test with a small value of α
and high power to detect important alternatives.  As might be expected, though, such tests require
more information about the population that we are examining.  In section 16.7 we will see how to
construct tests meeting such dual objectives.

!!!!
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16.3 Tests for Proportions

Example 16.1 illustrated the computation of the significance level and power for a simple test for a
proportion.  In that example we tested a coin by tossing it 25 times.  When using so few repetitions
we observed that the typical two-sided test with a significance level about 0.1 has very low power
for alternatives, such as .6p =  in the example, that one might want to detect.  For that reason,
hypothesis tests for an unknown proportion that use a small number of trials are usually done with
higher significance levels.  More ideally one would like to perform such tests with larger sample
sizes.  We will therefore describe the construction of these tests for an unknown proportion p when
the samples are large enough for us to apply the normal approximation to the binomial distribution.
In this section we will concentrate on the construction of tests with a specified significance level,
postponing the computation of the power to section 16.7

Example 16.2: Suppose we wish to evaluate the effectiveness of a new drug compared to an old
one that is known to be 30% effective in treating a certain ailment.  The new drug is administered
to 75 randomly selected patients and it is found to be effective for 32 of them.  Would this be
sufficient evidence to reject the hypothesis that the drug is only as effective as the old medication?
Give your response using both 0.05 and 0.01 significance levels.

Solution:

Notice that rather than specifying a decision criterion, we have stated significance levels with
which we wish to operate. The levels selected are conventional.  If the corresponding decision
criteria are met, we speak of the resulting rejections as significant ( 0.05α = ), respectively, highly
significant ( 0.01α = ).

Our null hypothesis 0H  states that the new drug has the same effectiveness as the established
treatment.  Denoting the effectiveness of the new drug by p this can be written as 0 : .30H p = ,
versus the alternative : .3 or .3aH p p> < .  If our experiment rejects the null hypothesis we
ordinarily report whether the result was indicative of an improvement ( .3p > ) or a worsening
( .3p < ) compared to the standard treatment

A natural candidate to use for testing the null hypothesis is the fraction of tested patients for whom
the new drug was found effective.  We introduced this quantity in Chapter 15, as the random
variable p̂ .  Recall that by Theorem 15.4 when n, the sample size, exceeds approximately 30 and
the trials are conducted independently, p̂  has a normal distribution with mean p and standard

deviation pq
n

.  Our decision criterion should reject the null hypothesis when the sample

frequency p̂  is significantly larger or smaller than the hypothesized value of 0.3.  It is customary,
(though not logically necessary) to select cutoff values for p̂  that are symmetric around the
hypothesized value .3p = .  In other words, the decision region C should encompass the shaded
portions in the probability histogram of p̂ shown below.
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Figure 16.2

If we want .05α =  then the area of the shaded regions should total .05.  Since the regions are
symmetric, the total area below the right cutoff value should be 0.975.  From Table B.3 for the
standard normal distribution, the right cutoff point must be 1.96 standard deviations above the
hypothesized mean .3p =  and the left cutoff 1.96 standard deviations below the mean.  Thus,
describing our test using z values we have:

0 :H  0.3p =  versus. : 0.3aH p ≠

Test: With 0.05α =  reject 0H  if 
(.3)(.7)

75

ˆ ˆ .3 1.96
pq
n

p p pz − −= = >  or 1.96z < − .

Returning to the data of the example, for the new drug there were 32 effective treatments out of 75

trials, giving a value of 32
75ˆ .43p = ≈ .  The associated z value is 

(.3)(.7)
75

.43 .43 .3 2.39
pq
n

pz − −= = = .  Since

this value exceeds 1.96, the observed frequency is large enough for us to reject the null hypothesis
at the 0.05 significance level and to conclude that the true p is greater than 30%.

To perform a two-sided test at the 0.01 significance level we have only to determine the z value
that cuts off a total area of 0.01 in the two tails or equivalently, total area .995 below the right tail.
Using Table B.3 again we obtain the following formulation of the test:

0 :H  0.3p =  versus. : 0.3aH p ≠

Test: With 0.01α =  reject 0H  if 
(.3)(.7)

75

ˆ ˆ .3 2.57
pq
n

p p pz − −= = >  or 2.57z < − .

We have already computed that 2.39z = , which is not large enough to reject the null hypothesis at
the 0.01 significance level.  By this standard, the observed result (43% successful treatment rate in
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the sample) is within the realm of acceptable variation from the hypothesized value, which
therefore cannot be rejected. !!!!

Example 16.2 illustrates a common feature of hypothesis testing.  Adopting a more stringent
standard of proof by lowering the significance level will often change a finding from significant to
non-significant.  Raising the significance level of course has the opposite effect.  Setting the level
too high will certify outcomes as significant that are more likely to be the result of chance
variation.  Too small a significance level will prevent us from seeing real effects that may be
meaningful.  Let us summarize the procedure used in Example 16.2 for the two-sided hypothesis
for proportions.

Rule 16.1 (Two-sided hypothesis test for an unknown proportion): To test the null hypothesis
0 0:H p p=  vs. an alternative 0:aH p p≠  at a significance level α  using a random sample of size

30n > ::

a) Use the table of the Z distribution to find the value 
2

zα  with the property that the area in the

right tail, i.e. beyond 
2

zα , is 2
α . (For example with .05α = , we have .025 1.96z = , since

( 1.96) .025P Z > = .)

b) Compute the z value for the observed proportion p̂ , assuming the true p is 0p , in other

words compute 0

0 0

ˆ
(1 )

p pz
p p

n

−=
−

.  (Remember, z expresses the number of standard deviations

of the observed value p̂  from its hypothesized expected value of 0p .)

c) Reject 0H  if the value of z found in b) exceeds 
2

zα  or is smaller than 
2

zα− . !!!!

16.4 Tests for Means

The previous section laid out the principles of hypothesis testing for proportions when using large
samples.  Although the sample frequency p̂  provides the ultimate justification for the decision we
reach, the decision criterion in practice relies on the computation and value of z, as specified in
Rule 16.1.  In this context we call z a test statistic.

Fortunately, the ideas elaborated in section 16.3 apply with only slight modifications to many other
hypotheses testing situations.  In this section we consider hypothesis tests as they apply to means,
examining first the case of large sample tests, followed by a more general discussion relating to
arbitrary sample sizes.
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Example 16.3: Prior to the introduction of a new production process, the lightbulbs produced in a
certain factory had an average lifetime of 750 hours.  The quality control department tests 100
randomly selected bulbs produced using the new process.  The tested bulbs lasted on average 740
hours with a standard deviation of 35 hours.  At the 0.05 significance level, is this evidence
sufficient to conclude that there has been a change in bulb quality?

Solution:

The null hypothesis 0H  states that there has been no change in mean bulb life, which remains 750
hours.  We wish to assess whether the sample indicates evidence of a significant change from this
value.  Thus,

Null Hypothesis: 0 : 750H µ =  vs. : 750aH µ ≠ .

Intuitively, we would reject the null hypothesis when the sample mean 100x  falls too far below or
above the hypothesized value.  Since the sample mean has an approximately normal distribution
for large ( 30n > ) samples, we can use a z statistic to assess whether 100x  is too far from the
hypothetical value of 750.  Thus

Test statistic: 750xz

n
σ

−= , where x  is the sample average for the tested bulbs, σ  is the standard

deviation for the entire population, and n is the sample size.  When n is large and σ  is not known
we usually replace it by the sample standard deviation s.

What values of z will lead us to reject the null hypothesis?  This is determined by the significance
level.  In order to attain a 0.05 the significance level, the total area in the rejection region must be
0.05.  Selecting the rejection region to be symmetric, we use the value .025z  described in Rule
16.1a).  From table B.3 we obtain the value .025 1.96z = .  Thus

Decision Criterion: Reject 0H  if 1.96z < −  or 1.96z > .

In this case we find using the values 740x = , 35s = , and 100n =  that

35
100

740 750 10 2.86
3.5

z −= = − = − .  Since this value is below the cutoff point of 1.96z = −  we reject

the null hypothesis and conclude that the new process produces bulbs with a shorter average life. !!!!

As in section 16.3 we can formulate the work in the example as a general procedure.
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Rule 16.2: (Two-sided large sample hypothesis test for a mean):  To test the null hypothesis
0 0:H µ µ= vs. the alternative 0 0:H µ µ≠  at a significance level α  with a random sample of size

30n > :

a) Find the value 
2

zα  such that the 
2

( ) 2P Z zα
α> = .

b) Compute the z value for the sample mean x , assuming the population mean is 0µ . Use the

expression 0xz

n

µ
σ
−= , if σ  is known or if σ  is unknown, 0xz s

n

µ−= , where s is the standard

deviation of the sample.

c) Reject the null hypothesis if the value z found in b) is less than 
2

zα−  or greater than 
2

zα .!!!!

Rule 16.2 requires that we use a large sample to test the hypothesis.  Under some mild restrictions
we can use small samples, but the z statistic is only appropriate when the value of σ  is known.
When we substitute for the usually unknown σ  the sample standard deviation s we can no longer
use normal distributions, but rather the more general Student-t distributions discussed in section
15.4.  The details are given in the Rule 16.3 and illustrated in Example 16.4.

Rule 16.3: (Small sample two-sided test hypothesis test for mean) Suppose a continuous
random variable X has an approximately normal distribution.  To test the null hypothesis

0 0: XH µ µ=  versus the alternative 0:a XH µ µ≠  with significance level α  using the average x
from a random sample of size 30n <

a) Use Table B.5 to find the value ,1ft α− , with 1f n= − degrees of freedom, having the
property that the central region under the Student density curve from ,1ft α−−  to ,1ft α−  has area
1 α− .  (The table limits the choice of α  to 0.1, 0.05, 0.02, 0.01.)

b) Compute the t statistic for the observed sample mean x .  In other words, compute
xt s

n

µ−= , where s is the sample standard deviation.

c) Reject 0H  if the value of t found in b) is larger than ,1ft α−  or smaller than ,1ft α−−  !!!!.

Note the procedure is applicable only for testing the mean of a random quantity with an
approximately normal or at least mound shaped distribution.  Thus, we cannot use the Student
distribution to perform small sample testing for the mean of a highly skewed distribution.

The value ,1ft α−  found in a) determines the cutoff values for the test.  To find this quantity we use
a Student distribution with 1f n= −  degrees of freedom.  Roughly speaking, the number of
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degrees of freedom is related to the number of “independent” values that appear in the expression
for the sample standard deviation s.  For example, when we compute the standard deviation of
three data values 1 2,x x  and 3x , we first find the sample variance 2s  using

2 2 2
2 1 2 3( ) ( ) ( )

2
x x x x x xs − + − + −= .

Since 1 2 3x x x x= + + , the three quantities in the numerator satisfy 1 2 3( ) ( ) ( ) 0x x x x x x− + − + − = .
Hence, one of these quantities may be computed from the other two.  It is this fact that leads to the
value 2f =  in this case and more generally 1f n= − .

Example 16.4: Suppose in Example 16.3 that only 15 randomly selected bulbs had been tested
with the results as given ( 740x = hours and 35s =  hours.)  Can we conclude at the 0.05
significance level that the new production process produces bulbs with a shorter lifetime?

Solution:

We follow the steps given in Rule 16.3, using as our null hypothesis 0 : 750H µ =  with a two-sided
rejection region.  Since our sample size is 15 we have 14f =  degrees of freedom.  From table B.5
we obtain that 14,1 14,0.95 2.14t tα− = = .  Next we compute the value of t associated with the sample
mean.  We have

0740 740 750 1.1135
15

t s
n

µ− −= = ≈ − .

Since the value of t is in the interval [ 2.14,2.14]−  there is insufficient evidence to reject the null
hypothesis.  The sampling has revealed no statistically significant change in the average life of the
bulbs. !!!!

Why does the same sample average produce different conclusions in Example 16.3 and Example
16.4?  Using a smaller sample, we expect larger variation in the sample average.  Hence, a more
deviant sample average is needed for us to believe that something is amiss.  In the example, an
average of 740 hours for a sample of size 15 is not extraordinary if the true mean is 750 hours.
However, for a sample of size 100 such a mean (with the given value of s) would be highly
unlikely.  The precise testing procedures described above enable us to quantify these intuitive
observations.

16.5 P-Values

In our discussion of hypothesis testing we have usually chosen to work with significance levels of
0.01 and 0.05.  These are of course purely conventional and could just as well have been chosen as
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0.008 or 0.06.  The size of these conventional values has some basis in human psychology.  For
example, people begin to get suspicious about the “fairness” of a coin when it produces heads in
five consecutive tosses (probability 0.03≈ ).  However, the choice of conventional significance
levels also derives from the fact that the computation of cutoff values relies in many cases on
lengthy calculations (for instance for Student’s t.)  Computations by the statistical user were
therefore limited by the information available in standard tables.  Naturally, this led to various
conventions on the choice of significance levels.

With the availability of software that can instantly compute probability values for even
complicated distributions, there is no longer a need to impose artificial conventions as to what
significance levels are appropriate.  Rather, the researcher can report the smallest significance
level for which the observed outcome would lead to the rejection of the null hypothesis.  The
precise concept is known as the P-value of the test.  (The “P” stands for probability.)

Definition 16.4: (P-value) Suppose a hypothesis test uses a value of some random variable X (the
test statistic) as a rejection criterion for a null hypothesis 0H  and we observe the value x of this
test statistic.  The P-value of the outcome is the probability that, when the null hypothesis is true,
the random variable X will produce a value as extreme as the one observed. !

We clarify the meaning of Definition 16.4 by finding the P-values for the experiments reported in
Example 16.3 and Example 16.4.

Example 16.5: Find the P-values for the outcomes observed in the light bulb tests described in
Example 16.3 and Example 16.4.

Solution:

In Example 16.3, which uses a large sample test, we use as a test statistic the z score of the sample
mean, assuming the null hypothesis is true.

We have seen in Chapter 15 (Theorem 15.3) that the sample mean for large samples has a normal
distribution.  The z score of the sample mean is our test statistic.  In Example 16.3 we found

2.86z = − .  According to Definition 16.4 the P-value is the probability of obtaining a result as or
more extreme than this.  Since we are dealing with a two-sided test that rejects the null hypothesis
when we obtain either large positive or negative values of z, the P-value is ( 2.86) 0.004P Z ≥ ≈ .
This number means that if we perform a hypothesis test with an 0.004α > , the null hypothesis
will be rejected by the given observation.  In effect, when 0.004α >  the cutoff value for z has a
tail area 2 0.002α > , which is the tail area corresponding to 2.86z = .  In order for the tail area to be
larger than 0.002, the cutoff value must become smaller than 2.86, so the given observation will
then be significant at the level α .  In particular, the observation will be significant for 0.05α = , as
we have shown directly in Example 16.3.

For Example 16.4 we must use a software package to compute the P-value.  In that example we
used a Student-t with 14f =  degrees of freedom as the test statistic.  The value for the Student



16 Hypothesis Tests

331

random variable was 14 1.11t = − .  As we are doing a two-sided test, we need account for possibly
positive or negative deviations about the hypothesized value.  Thus we must find the

14( ) 1.11P t > .  In Excel, using the command tdist() (see Section 15.4), we find that

14( ) 1.11 0.285P t > ≈ .  Therefore, the smallest significance level for which the null hypothesis
would be rejected by the observed outcome would be 0.285α = .  In particular, we would not have
grounds to reject the null hypothesis at the 0.05 significance level. !!!!

Reporting a P-value instead of using a conventional significance level allows the reader to set his
or her own standard with which to weigh the evidence.  Extremely small values of P, say

0.001P < , provide a clear signal that the null hypothesis should be rejected.  Chance effects alone
are unlikely to produce such an improbable result.  A P-value in excess of 0.2 provides no
compelling reason to doubt the null hypothesis.  Between these extremes is a large gray area where
individual interpretations vary.  From a practical viewpoint, for example, a result with a P-value of
0.054 should probably be accorded the same weight as one that is significant at the conventional
0.05 level.  The P-value methodology allows us to make such distinctions and is the preferred way
of describing the outcome of a test of significance

16.6 Comparisons

In Sections 16.3 and 16.4 we discussed tests that are used to examine whether some unknown
proportion or mean has a specified value.  In many applications, for example comparing the
effectiveness of two treatments, it is more usual to test both treatments and to compare the
outcomes to each other.  We will now discuss the framework for doing this.

Suppose for instance that we are interested in studying the response of patients to two different
treatments.  The subjects are divided into two groups, ideally through some random allocation.
Participants in one group receive treatment A, the others treatment B.  Our purpose in doing the
experiment is to see if there is evidence to believe there is a difference in the underlying
frequencies of successful treatment for the population as a whole, Ap  and Bp .  When the
experiment terminates we determine the fraction of patients who responded successfully to each
treatment.  These frequencies will be denoted by ˆ Ap  and ˆBp  respectively.  Rule 16.4 below
describes the steps needed to carry out a large sample hypothesis test in this situation:
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Rule 16.4: (Large Sample Comparison of Proportions): Suppose Ap  and Bp  are unknown
success frequencies for two treatments.  Suppose two independent (large) random samples of sizes

An  and Bn  yield Ax  and Bx  successes respectively with corresponding frequencies of ˆ Ap  and ˆBp .
To test the hypothesis 0 : A BH p p=  versus the alternative that A Bp p≠  at a significance level α
carry out the following steps:

a) Find the value 
2

zα  such that the 
2

( ) 2P Z zα
α> = . (see Rule 16.1a)

b) Compute the z score defined by 
ˆ ˆ

1 1ˆ ˆ( )

A B

A B

p pz
pq

n n

−=
+

 where ˆ A B

A B

x xp
n n

+=
+

 and ˆ ˆ1q p= − .

c) If 
2

z zα>  or 
2

z zα< −  reject the null hypothesis and conclude that A Bp p≠ . !!!!

Steps a) and c) in Rule 16.4 are familiar from our earlier discussion.  Step b) is somewhat
mysterious and forbidding.  The following paragraphs provide an explanation, but the reader who
wishes may skip these comments and proceed to Example 16.6 for a concrete illustration.

We know that when An  and Bn  are large the sample frequencies ˆ Ap  and ˆBp  are each normally

distributed, with expected values Ap  and Bp , and variances 2
ˆ A

A A
p

A

p q
n

σ =  and 2
ˆB

B B
p

B

p q
n

σ = ,

respectively.  Our null hypothesis asserts that A Bp p= .  If we are looking for evidence to refute
this we should consider the difference between the sample relative frequencies ˆ ˆA Bp p− .  When
this difference deviates substantially from zero it is clearly evidence against 0H , but we need to
know how large a deviation is significant.

Fortunately, not only do we have the specific facts listed above regarding the individual random
variables ˆ Ap  and ˆBp , but similar results hold for the difference ˆ ˆA Bp p− .  Specifically, when both

An  and Bn  are large (and A An p , (1 )A An p− , B Bn p , and (1 )B Bn p−  are all bigger than 5) then

•  ˆ ˆA Bp p−  has a normal distribution.

•  The expected value of ˆ ˆA Bp p−  is A Bp p− .

•  The variance of ˆ ˆA Bp p−  is the sum of the variances of ˆ Ap  and ˆBp .  In other words, the

standard deviation for ˆ ˆA Bp p−  is A A B B

A B

p q p q
n n

+ .

Now let’s add to this mix the additional assumption of the null hypothesis that 0A Bp p− = .  Based
on the usual procedures for a normal distribution, the z score for ˆ ˆA Bp p−  is
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ˆ ˆ ˆ ˆ( )A B A B A B

A A B B A A B B

A B A B

p p p p p pz
p q p q p q p q
n n n n

− − − −= =
+ +

, (16.1)

since 0A Bp p− =  by hypothesis.  Of course the denominator in the last expression contains the
population parameters Ap  and Bp  which are unknown. (Note that unlike Rule 16.1 the null
hypothesis here provides no assumption about the individual values of Ap  and Bp .)  We can
simply replace the values of Ap  and Bp  by the sample frequencies ˆ Ap  and ˆBp , but a better
estimate can be made using the null hypothesis.  Namely, under the null hypothesis A Bp p=  we
can view both samples as having been drawn from a population with the same underlying
frequency of success p.  We can estimate this common frequency by pooling or combining the
results from the two treatments.  Altogether there were 1 2x x+  successes out of a total sample of

A Bn n+ .  Thus a reasonable estimate for the hypothesized common value of Ap  and Bp  is

ˆ A B

A B

x xp
n n

+=
+

. (16.2)

If we replace Ap  and Bp  in the right side of (16.1) by the formula for p̂  in (16.2) and set both Aq
and Bq  equal to ˆ1 p−  we obtain the formula for z given in Rule 16.4.

Example 16.6:  A drug company wishes to test a new antidepressant medication versus a placebo,
a harmless treatment that has no active medical ingredient.  Patients with similar diagnoses are
randomly selected to either receive the treatment or the placebo.  150 patients received the active
treatment and 130 (the so-called control group) received the placebo.  After 4 weeks a team of
psychiatrists conducted standard evaluations of the patients.  In the group receiving the
medication, 70 patients showed marked improvements according to the psychiatric evaluation
while in the control group 47 patients received a similar evaluation

i) Does the trial provide sufficient evidence at the 0.05 significance level to conclude that the
new medication is more effective than a placebo.

ii) What is the P-value for the outcome of the trial?

Solution:

i) Let Ap  denote the frequency of successful treatments using the medication in a population of
depressed patients.  Similarly, let Bp  denote the success rate in such a population of using a
placebo treatment.  Our null hypothesis 0H is that A Bp p= .  We will use the data from the trial
to test this hypothesis according to the steps in Rule 16.4.

a) Based on the significance level the cutoff value for the z score is 1.96.
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b) We have 150An = , 130Bn = , 70Ax = , and 47Bx = .  From this data we compute the other

quantities needed to find the z score:  70ˆ .467
150

A
A

A

xp
n

= = ≈ , 47 .361
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B
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= = ≈  and
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.  Therefore we obtain

1 1
150 130
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1 1 (.418)(.582)( )ˆ ˆ( )
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pq
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− −= ≈ ≈
++

c) Since the observed value of z is neither larger than 1.96 nor smaller than 1.96− , there is
insufficient evidence to reject the null hypothesis.  The medication may in fact be no better
than a placebo.  Although new drug performed better than a placebo in the trial, the10 %
improvement in effectiveness is not sufficiently large at this significance level to reach a
definitive judgement in favor of the new drug.

ii) The P-value is the probability that under the null hypothesis we will obtain an experimental
outcome as extreme as the one obtained.  Since we obtained a z value of 1.79 we need the
probability ( 1.79)P Z > .  From the tables the latter probability is 0.073.  This is the smallest
significance level at which the observed result would allow us to reject the null hypothesis. !!!!

We can also formulate hypothesis tests comparing two means, two variances or many other
statistics that can be computed for an underlying population and estimated from data.  The details
of these tests are all slightly different and some rely on probability distributions not covered in this
text.  However, the logic and mechanics of the testing are the same in all cases and the reader who
needs to be acquainted with a particular method can consult any standard statistics textbook.  Most
standard statistical packages provide the user with templates that can be used to perform the actual
computations.

16.7 Power Computations

In Definition 16.3 we introduced the power of a test.  This measures the likelihood that an
incorrect null hypothesis is rejected when an alternative is correct.  If possible, our test should be
designed so that when a plausible alternative is true there is a high probability of rejecting the null
hypothesis.  In this section we consider how to find the power for some of the tests considered in
this chapter

Example 16.7: Suppose the new drug in Example 16.2 is actually about 40% effective in treating
the illness for which it is prescribed.  Using a significance level of .05α =  and a patient pool of
75, what is the power of the test used in Example 16.2 to detect this alternative?

Solution:
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The power γ is the probability that the experimental outcome will satisfy the decision criterion, if
the alternative hypothesis is true.  The specific alternative hypothesis we are interested in is

: .40aH p = .  We must first cast the decision criterion in terms of p̂  before we can compute the
power of the test.

Recall from Example 16.2 that the null hypothesis will be rejected if the quotient 
(.3)(.7)

75

ˆ .3p −  is greater

than 1.96 or less than -1.96.  In other words we reject the null hypothesis if

(.3)(.7) (.3)(.7)
75 75

ˆ ˆ.3 .31.96 or 1.96p p− −> < − . (16.3)

Solving these two inequalities for p̂ enables us to express the decision criterion in terms of the
observed frequency p̂ .  We obtain

Reject 0H  if ˆ 0.404p >  or ˆ 0.196p < .

The power γ  for the alternative hypothesis 0.4p =  is the probability of this rejection criterion
occurring when the true p is 0.4.  We can again use the normal distribution to compute this.  We
have

.4 .4

(.4)(.6) (.4)(.6)
75 75

ˆ ˆ( .404 | ) ( .196 | )

.404 .4 .196 .4( ) ( )

( .07) ( 3.6)
.53 .0002 .53

p pP p P p

P Z P Z

P Z P Z

γ = == > + <

− −= > + <

= > + < −
= + ≈

Thus if there is actually an improvement in effectiveness to 40%, this has only about a 50% chance
of being detected by this experiment, when testing at the commonly accepted .05 significance
level. !!!!

When a change in treatment success, say from 30% to 40%, is not statistically significant,
researchers often say that the test showed a statistically non-significant change compared with the
old treatment, though there was a clinically significant improvement.  When our experiment
results in a value of p̂  that is not large enough to reject the null hypothesis but is of possibly
practical interest, we need to consider whether the test had a high enough power for the relevant
alternative.
!!!!
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If we wish to increase the power for a given alternative, while using the same significance level,
then we must increase the size of our sample.  Let’s illustrate this point.  Fixing the significance
level, the hypothesized value of p and the sample size, we can compute the power of our (two-
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sided) test for any alternative hypothesis, exactly as we did in Example 16.7.  We can plot the
results as a graph, known as the operating characteristic curve for the test.  Varying the sample
size produces different curves, from which we can easily determine an appropriate sample size for
alternatives that are of interest.  The table below shows four such curves in which 0.05α = , the
null hypothesis is 0 0.4p = , and n takes on values 50, 100, 150 and 200.
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Operating Characteristic Curve: n = 150
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Operating Characteristic Curve: n = 200
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Figure 16.3

Example 16.8:  Based on the Operating Characteristic Curves in Figure 16.3, approximately what
power does this test have for the alternative hypothesis 0.5p = , as n varies from 50 to 200?

Solution:

Using the graphs we can estimate the power to detect the alternative hypothesis 0.5ap =  for the
specified values of n.  We obtain the results tabulated below.

n 50 100 150 200

power 0.3 0.4 0.6 0.8

Thus, if it is important to reject the null hypothesis when the true value of .5p = , we should use a
sample of size at least 150 or 200.  Smaller sample sizes run the risk of producing non-significant
results, even when the true p is 0.5. !!!!
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16.8 Summary

Hypothesis testing is a methodology that uses information from a sample to make a decision
regarding some aspect of a population.  Typical features of the population that lend themselves to
this type of analysis include assessing an unknown probability, an unknown mean or standard
deviation, or comparing two such quantities.  Although not discussed in this text, more general
procedures known as “goodness of fit” tests can be used to decide on the suitability of a proposed
probability model (distribution) for the population.

In all cases we begin by selecting a null hypothesis 0H  regarding the particular quantity of
interest.  We then need to find some “test statistic”, a random quantity computed from a sample,
whose values will be used to determine the outcome of the decision.  In the applications discussed,
the test statistic is usually a z score or a Student t. Typically, when the null hypothesis is true, the
tail values of the test statistic have a small probability of occurring.  When such an improbable
value occurs in our sample we take that as evidence against the null hypothesis.

The weight to be accorded a given observation is measured by its P-value.  This is the probability
of obtaining a result at least as extreme as the one actually observed.  A small P-value indicates
that, if the null hypothesis were true, we have observed an event not likely to occur by chance.  We
therefore have strong grounds for rejecting 0H .  Such an observation is called significant or
highly significant depending on the size of P (the smaller P, the more highly significant!).  A large
P-value implies that the observation has a reasonable chance of occurring, given the null
hypothesis, and therefore provides no grounds for rejecting the latter.  The conventional distinction
between low and high P-values is 0.05P = .

When the P-value is high we must be careful to phrase our conclusion as a provisional “Do not
reject 0H ,” rather than “Accept 0H .”  The true quantity for the population may well differ from
the hypothesized value and even by a practically important amount, yet because of the sample size,
the selected test may have little chance of correctly rejecting 0H .  Once we have settled on a
choice of P-value to separate rejection from non-rejection (the significance level of the test), we
can compute the probability that the test will reject 0H  when it is false and some alternative of
practical importance is true.  The latter probability is the power of the test for the particular
alternative.

16.9 Exercises

1. Suppose that the transit authority claims that 80% of its commuter trains arrive on time
(meaning within 5 minutes of their scheduled arrival time).  You examine this claim by
randomly selecting 30 trains and determining how many arrive on time.  If p is the probability
that a train arrives on time, you wish to test the null hypothesis that .80p =  versus the
alternative that .8p ≠ .

a) Formulate a rejection criterion and find the significance level for your choice.
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b) What is the power of your criterion to reject the null hypothesis when the true p is actually
70%?

2. During a presidential campaign, published polls show the leading candidate with 60% of the
popular vote in your state.  You decide to test whether this percent of support is correct among
people at your school.  You pick 20 people at random and obtain their voting preference.
Using a null hypothesis that 0.60p = , where p is the probability that a voter will support the
candidate, you will perform a two-sided hypothesis test.  Suppose your rejection criterion is
that at most 7 ( 7)≤ of the sampled voters or more than 16 ( 17)≥ indicated their support for the
candidate.

a) What is the significance level of this test?

b) What is the power of this test against the alternative that 0.5p = ?

3. A new drug for insomniacs claims to increase nightly sleep on average by 1.25 hours.  A sleep
lab tests the drug on 50 volunteers and finds that the average increase in sleep was 1.6 hours
with a standard deviation of 1 hour.

a) State a null hypothesis and a test statistic.

b) Carry out the hypothesis test using a significance level of 0.05α = .  When you perform
this test what, if any, implicit assumptions are you using about the effect of the medication?

4. a) To test whether a die is fair we toss it 100 times and count the number of times a one
appears.  Using a significance level of 0.05 describe the appropriate null hypothesis, test
statistic and rejection criterion for the test.

b) If we obtained a one on 22 out of 100 tosses, would that be sufficient evidence to reject the
null hypothesis for the test described in a)?

c) What is the P-value for the outcome in which 22 ones are observed in 100 tosses?

d) In a) we considered testing whether a die was fair by examining the frequency of one of the
six possible outcomes.  It might be thought that a better procedure would be to apply the
same criterion developed in a) (with 0.05 significance level) to all six values.  We would
therefore reject the die if at least one of the frequencies falls in the appropriate rejection
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region.  Does this test have a significance level of 0.05?  Explain?  Test your answer by
simulating 20 replications of 100 tosses of a fair die and counting how often the null
hypothesis is incorrectly rejected by the procedure we just enunciated.  The file dice.xls or
Excel’s random number generator can be used for this purpose.

5. A tire manufacturer claims that a certain brand of tire will last on average 40,000 miles before
it needs to be replaced.  A consumer group wishes to check this claim by doing a test in which
a mechanical device simulates the driving conditions.  Ten tires are tested in this way until the
tread wear indicators are visible and therefore the tires are in need of replacement.  The table
below gives the mileage data for the experiment:
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Tire # 1 2 3 4 5
Mileage (000s) 35 37.4 36 41 33

Tire # 6 7 8 9 10
Mileage (000s) 37 41 39 38 42.8

a) Use hypothesis testing ( 0.05α = ) with a suitable a null hypothesis to evaluate the
manufacturer’s claim.  How would you report your findings?
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b) What is the P-value of the results obtained in the test?  Explain what this number means.

6. In 1999 a psychologist reported that young women with low cholesterol levels (serum
cholesterol levels below 160 mg/dl) were more likely to score high on measures of depression
and anxiety than a group of comparable women with normal or elevated cholesterol.
Specifically, the study found that in the low cholesterol group of 55 women a total of 21 scored
high or very high on personality traits indicating they were prone to depression, while the
corresponding figure for the high cholesterol group was 12 out of 65.

a) Formulate a suitable null hypothesis and determine whether the observed difference is
significant at the 0.05α =  significance level?

b) What is the exact P-value for the observed outcome?

c) Does the result of the study imply that low cholesterol levels are a contributing factor in
depression in young women

7. Sepsis is a life-threatening reaction of the body to major infection.  It often leads to death
(approximately 225,000 deaths in the U.S. each year).  A genetically engineered drug for the
treatment of sepsis, Zovant, was tested on 1690 patients with severe sepsis at 150 medical
centers.  Half were given Zovant and half a placebo, in addition to the standard medical
treatment for sepsis.  In the group receiving Zovant, 24.7% of the patients died, while the death
rate in the placebo group was 30.8 %.

a) Formulate a suitable null hypothesis and determine whether the observed difference is
significant at the 0.05α =  significance level?

b) What is the P-value for the observed outcome?

c) Comment on of each of the following two possible ways of reporting the result.  You
should address the question of accuracy as well as clarity of meaning in each statement.

i) “The trials produced an absolute reduction in risk of death of 6%.”

ii) “The trials produced a 20% reduction in the death rate.”

8. A long-term study was carried out in Japan to assess the benefits of drinking green tea on
reducing the incidence of gastric (stomach) cancer.  The study compared the incidence of
gastric cancer per person per year for heavy consumers of green tea compared with light users.
There were a total of 206 cases of gastric cancer in persons reporting a consumption of more
than 500-ml of green tea per day.  Altogether, this group constituted 85,299 person-years.
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There were 66 cases of gastric cancer out of a total of 36,572 person-years in the group who
consumed less than 100 ml of green tea per day.

a) Formulate a suitable null hypothesis and determine whether the observed difference in
cancer rates is significant at the 0.05 significance level.

b) What conclusion do you draw from the study regarding the usefulness of green tea in
preventing stomach cancer?

9. Fosamax is a drug that acts to prevent bone resorption and thereby inhibit or reverse
osteoporosis.  To test the efficacy of the drug in lowering the incidence of vertebral fractures a
three-year study was conducted with 2027 patients having similar indicators of osteoporosis.
1022 patients received Fosamax and 1005 received a placebo.  In the three years of the study
15.0% of the placebo group were diagnosed with a least one new vertebral fracture, while the
corresponding incidence for the Fosamax patients was 7.9%.

Formulate an appropriate null hypothesis and find the P-value for the observed outcome.  Do
the results provide support for the claim that the drug reduces the fracture rate for at risk
patients?

10. Until 1991 the state of California allowed persons who had served a prison term for a violent
misdemeanor to legally purchase a handgun.  This was prohibited beginning in 1991.  A group
of researchers obtained the names of 787 violent misdemeanants who made legal handgun
purchases in the period 1989-90 (the approved group).  A similar group of 986 misdemeanants
tried to make a purchase in 1991 but were denied by the new law (the denied group).  The
researchers studied the number of violent crimes committed by each group over the following
three years.  The results are given below:

Number of person-years Number of violent crimes

Approved Group ( 727)n = 1757 174

Denied Group ( 927)n = 2325 186

Does the study provide evidence supporting the contention that restriction of gun sales to
violent misdemeanants reduces subsequent violent crimes in that group?  Justify your answer
using a suitable hypothesis test.

11. a) If two hypothesis tests have significance levels α  and α ′ , where α α ′> , which will have
the larger power for a given alternative hypothesis?  Explain (Hint: Think about the
rejection regions for the two tests.)

b) Explain why we can make the power of a test arbitrarily close to one for any alternative
hypothesis by taking a large enough sample size.  Why then might a very large sample size
be counterproductive?

12. When there is a low incidence of a condition in a population, a large sample size is needed to
attain high power to detect the effect of an intervention.  For example, suppose an illness
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occurs at a rate of 10 per 10,000 persons per year.  A certain intervention is thought likely to
reduce the incidence of the illness.  A 20% reduction to a rate of 8 per 10,000 persons per year
would be considered desirable.

a) Suppose 1000 persons participating in the intervention are followed for 10 years.  What is
the power of a test with significance level 0.05 for the alternative hypothesis that the
incidence of the illness is reduced to 8 cases per 10,000 persons?

b) Repeat the calculation of power in a) but assuming 10,000 individuals in the study for 10
years.

13. Suppose we wish to test the null hypothesis: 0 0:H p p=  versus the alternative 0:aH p p≠
using a significance level of 0.05.  Your colleague proposes the following large sample test:
With p̂  denoting the sample frequency, construct the 95% confidence interval based on p̂ .
Reject 0H  if this confidence interval does not contain the hypothesized value of p.

a) Explain why this is a suitable test, i.e. why it has a significance level of 0.05.

b) Show that in fact this test is equivalent to the usual test using z scores.
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