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15 Statistical Inference: Estimation
Advisor: Congratulations, Mr. Burns, the latest polls show you are up
six points.
Burns:   Ah, giving me a total of...
Advisor: Six.

From: The Simpsons

15.1 Empirical Sampling Distribution

Statistical inference brings together the threads of data analysis and probability theory.  The
inference process is concerned not simply with describing a particular sample (the data), but with
using this sample to make a prediction about some underlying population.  For example, in polling
we sample the opinions of a random selection of the population and use characteristics of the
sample to infer statements about a far larger group.  Judging by the enormous monetary resources
spent on polling each year, the process must yield useful information to the people paying for the
surveys.  In this chapter we describe how probability theory allows one to extract the desired
information along with some measure of confidence in the predictions.

It is often helpful in thinking about statistical problems to bear in mind a simple mental model of
what may be in reality a complicated physical process.  To this end we propose a “bowl model” of
the sort that we have used at times in the previous chapters.

Definition 15.1 (Bowl Model): Suppose we have one or more bowls each containing numbered
balls.  A bowl model consists of making successive random selections from the bowls, recording
the number on the ball and then selecting another ball.!

At any stage, the randomness condition means that each ball remaining must have an equal chance
of being selected.  In this definition we do not specify whether the selected ball is replaced in the
bowl (sampling with replacement) or discarded.  The mathematical treatment in the latter case is a
bit more complicated and will not be discussed in detail.  However, for now we leave open this
aspect of the scheme and illustrate how the bowl model can be used to describe some typical
inference scenarios.

Example 15.1: Describe bowl models for the following inference problems:
a) Patients undergo a new treatment for cancer.  On average how long does a patient live after

receiving the treatment?

b) What fraction of the voting population supports candidate A?

c) A pharmaceutical company wants to evaluate the effectiveness of a new antidepressant drug by
testing it on a random group of patients.

Solution:
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a) Imagine a bowl in which each ball represents a person receiving the new cancer treatment.  On
every ball a number is written with the number of years the patient survives after receiving the
treatment.  This imaginary bowl would hold very many balls, many of which would only be
“visible” in the future.  Nonetheless, we would like to know the average of the numbers on
each ball, as this represents the average survival time for a random patient.  To estimate this
population average, we draw a certain number of balls (patients) from the bowl at random and
find the average of the numbers on the balls from this sample.

b) We imagine a large bowl containing a ball for each voter.  A “1” is written on a ball if the
person favors candidate A and a “0” otherwise.  Of course the number on a ball may change
over time, but at any particular moment we imagine that the distribution of zeroes and ones is
fixed.  We want to know the proportion of the balls that have a one.  To estimate this
proportion we randomly select balls and record the number on each.  We then find the average
number appearing on the selected balls.  For example, if we selected 10 balls numbered 0, 1, 1,
1, 0, 0, 1, 0, 1, 1, 0 then the average would be 0 1 1 1 0 1 0 1 1 0 6

10 10 0.6+ + + + + + + + + = = .  In other words, the
average is just the relative frequency of the outcome “1” (supporter of A) in the sample.

c) The bowl model here is similar to b).  The balls in the bowl represent depressed patients.  After
a number of weeks, a “1” (improvement) or “0” (no improvement) is written on each ball
depending on the treatment outcome.  To evaluate the medication a certain number of patients
are selected at random and after treatment we record the “0” or “1” evaluation.  As in b)
averaging the recorded numbers gives the frequency of improved patients in the sample.!

In this and the next chapter we will be concerned with the mathematical analysis of the results of
sampling from a bowl model, assuming the sampling has been done correctly.  In the bowl model
this means that the balls that are examined in a sample are chosen in such a way that each ball has
an equal chance of being selected from the entire population of balls remaining in the bowl.  The
goal of this process is to produce a representative sample of the population.  Statisticians call this
simple random sampling, but in practice it is not a simple matter to ensure that we have produced a
representative sample of the intended population.  In chapter 7 we have already cited the Literary
Digest poll of 1936 which, in spite of its large size, produced inaccurate predictions because of its
non-random selection criteria.  The solution to Example 15.1c) proposed above is also defective in
this regard.  Perhaps unwittingly the group of patients from whom we are selecting our subjects
contains people with unknown characteristics that might affect the outcome of the treatment.  To
guard against this possibility the study should be performed with a control group who are
randomly selected from the same patients, but are treated with a known therapeutic agent.  When
possible, this is done in a so-called double-blind study in which neither the patient or examining
physician knows which treatment a given subject is receiving.  In such a scheme any difference in
outcomes can usually be attributed to the difference in treatment between the groups.  We refer the
interested reader to the bibliography for further references on this topic.

In the remainder of this section we describe the outcome of some computer experiments with bowl
models.  In these experiments we work with bowls whose composition is known and empirically
examine the characteristics of the samples.  In section 15.3 we describe the more precise
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theoretical properties of samples that are needed to make exact predictions about bowls whose
composition is unknown.

Example 15.2: A bowl contains 800 balls. 100 balls have a “1” written on them, 200 have a “2”
and 500 have a “10”.

a) What is the average number written on the balls?

b) Draw 20 samples (with replacement) each consisting of 10 balls.  Compute the average of the
numbers on the 10 balls in the each sample.  Describe the distribution of the 20 averages.  In
particular, how close are these averages to the population average found in a)?

c) Repeat the instructions in b) but using 20 replicates each consisting of a selection of 100 balls
from the bowl.

Solution:

a) The average is the sum of all the numbers on the 800 balls divided by the total number of balls,
800.  Taking into account the balls with the same number we have

1(100) 2(200) 10(500) 5500 6.875
800 800

µ + += = =

We use µ  here, rather than, x  because the average computed here refers to a value associated
with the entire population, not simply a sample.  Usually, this number will not be known and
our objective is to estimate its value from the average of a sample.

b) We can use Excel to simulate sampling with replacement by selecting random numbers
according to the probabilities given in a discrete probability distribution table.  In section
13.5.2 we described how this is done.  Here the random variable X  is the number on the
selected ball.  If the individual balls have equal chance of being selected then, because we are
sampling with replacement, we are using the probability distribution for X  given in the
following table:

X 1 2 10

( )P X x= 100 .125
800

= 200 .25
800

= 500 .625
800

=

Table 15.1

We draw 20 columns, each with 10 random numbers (1, 2 or 10) selected according to this
distribution, and then find the averages of the 10 numbers in each selection.  For example, the
first set of 10 random values that were selected by Excel were the numbers

10 2 1 10 10 2 10 10 10 10
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whose average is 7.5.  The averages for the remaining 19 samples are shown in the following
table.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

7.5 7.5 8.3 6.7 8.3 8.3 5.8 7.5 7.4 6.8
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20

6.7 5.7 8.2 4.4 6.7 7.3 6.7 7.5 6.6 6.8

Table 15.2

Some of the sample averages are quite far from the population average.  In fact in samples 3, 5,
6 and 13 the sample average is more than 20% higher than the population average of 6.875.
We can get a better sense of the dispersion of these sample averages using a graphical
representation.  As we have only 20 data points to consider (the 20 sample averages) a box plot
would be a better pictorial representation than a histogram.

Distribution of Sample Averages

size 10 samples

4 5 6 7 8 9 10

Sample Average

The median for the sample averages is a little above 7 so it is fairly close to the population
average.  In fact, the average of the 20 sample averages in Table 15.2 is 7.035, also fairly close
to the population average of 6.875.

c) We repeat the analysis above but using samples of size 100.  The averages for the 20 samples
are listed in Table 15.3.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

5.91 7.02 7.24 6.96 5.68 7.21 6.74 7.17 7.03 6.73
Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20

6.25 6.83 7.08 7.23 6.91 6.54 6.78 7.27 7.18 7.75

Table 15.3
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The variation from sample to sample appears much less pronounced than for samples of size
10.  Comparing box plots for the two sets of numbers in Table 15.2 and Table 15.3 makes this
apparent.

Distribution of Sample Averages

Size 10
samples

Size 100
samples

4 5 6 7 8 9
Sample Average

Figure 15.1

Notice that in either situation the center of the distribution lies close to the population average.
For the larger sample size the distribution of sample averages appears more symmetric and
more concentrated near the center.  We will make these statements more precise in the next
section.!

15.2 Theoretical Sampling Distributions

The reader should have gleaned three ideas from the previous section.

•  Although we are accustomed to thinking of the average for a data set as simply a number, we
now want to consider how this number itself varies as we select different samples from a bowl
model.  Thus, if we select n  values, 1 2, , nx x x…  from a bowl model then the average x  of
these n  values will vary from sample to sample, as demonstrated in Table 15.1 and Table 15.2
above.  Thus these sample averages define a new random variable which we denote by nX  or
!!!!
293

simply X  if the reference to the number of sampled values is not needed.

•  The center of the distribution of values of the random variable X  lies close to the mean µ  of
the population. (See Figure 15.1)

•  As n  increases the values of X  are more tightly compressed around the center. (See Figure
15.1)

In this section we will make the last two statements more precise.  We will not attempt to prove
any of the stated results, but we hope the reader will be convinced of their plausibility through the
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evidence presented from simulations.  In section 15.3 these precise characterizations will be used
to construct confidence interval estimations for various population statistics.

Theorem 15.1 (Expected Value of X ): Suppose we have a bowl model for which the number X
appearing on the balls has a (population) average of µ .  If X  is the mean of a random sample of
size n  drawn from the bowl then the expected value of X  is also µ .  Symbolically we write this
as XXµ µ=  or ( ) ( )E X E X= .!

Note that this result is correct whether we draw from the bowl with replacement or without
replacement.  We illustrate the conclusion by referring to the data in Example 15.2.

Example 15.3: Compute the overall mean of the random variable X  giving the value of the balls
in the bowl model described in Example 15.2 and then compare this with the mean for the 20
values of 10X  and 100X  given in Table 15.2 and Table 15.3 respectively.

Solution:

In Example 15.2 we have already computed the mean Xµ  for the balls in the bowl.  We found that
6.875Xµ = .  For the samples of size 10 the mean for the 20 replicates listed in Table 15.2 (which

we denote by 10x ) is 10 7.035x = .  In particular, the mean is quite close to the population mean.  If
we had taken more replicates we would probably have found that the sample means produced an
average value even closer to the value of µ .  For the samples of size 100 the 20 replicates listed in
Table 15.3 have a mean 100 6.875x ≈ .  Here we see vivid confirmation of Theorem 15.1.!

Theorem 15.1 asserts that if we take repeated random samples of a fixed size from a bowl model,
then the averages for these replications will themselves average out to the population average.
From a practical viewpoint this result is not very useful since we rarely have the resources to
investigate more than one sample from our bowl model.  In order that this one sample provide a
reliable estimate of the population average, we must be confident that the mean from an individual
replicate is very close to the population average.  Figure 15.1 certainly suggests that as the sample
size increases the sample averages tend to cluster more tightly around the center of the distribution
for X .  We can measure this effect precisely in terms of the standard deviation.  The important
theorem below is one of the main reasons why the rather complicated standard deviation (and the
associated variance) plays such a prominent role in probability theory.

Theorem 15.2 (Standard Error of the Mean): Suppose we have a bowl model for which the
number X  appearing on the balls has a (population) standard deviation of σ .  If we draw n
independent random samples from the bowl, then the standard deviation of the sample average X

satisfies X n
σσ = .
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Remarks:

The expression “Standard Error of the Mean” or simply “standard error (SE)” is an old-fashioned
(and sometimes confusing) bit of terminology.  The word “error” in the expression signifies not a
mistake, but rather variation.  The term should be viewed as an abbreviation for the more precise
expression “standard deviation of the sample mean” or Xσ .  Note that while the standard
deviation σ  is a number measuring the variability of the underlying population, the standard
error measures the variability of the sampling process. !!!!
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Theorem 15.2 requires that the sampling from the bowl be done in such a way that the chance of
selecting a specific ball does not depend on which balls have already been selected.  Sampling
with replacement certainly meets this condition.  Sampling without replacement does not satisfy it.
For example, in the latter scheme selecting a ball precludes its ever being selected again.
However, if the number of balls in the bowl is much greater than the total number of balls in a
sample we can for practical purposes consider that samples drawn without replacement are
approximately independent.

Qualitatively, the theorem shows that the spread of values of nX  diminishes to zero as n → ∞ .
Thus, when we take a sample average using a large n  it is likely that any single sample average is
close to the average for the population.  This enables us to use a single such sample average as a
usually reliable estimate for the population mean.

Theorem 15.3 below gives a more precise measure of how likely it is for a value of the sample
average to fall a specified distance from µ .

Example 15.4: Compare the standard deviation for the data in Table 15.2 and Table 15.3 with the
values predicted by Theorem 15.2.

Solution:

We first must find the standard deviation for the random variable X .  This can be done using
Table 15.1, the probability distribution table for the random variable X , and Definition 13.5 in
Chapter 13.  We get

2 2 2.125(1 6.875) .25(2 6.875) .5(10 6.875) 4.045Xσ = − + − + − ≈ .

According to Theorem 15.2 the standard deviation for the sample means based on 10 sample

values should be 
10

4.045 1.28
3.1610X

σσ = ≈ ≈ .  The 20 replications listed in Table 15.2 produced a

standard deviation (which we denote by 10s ) of 10 .98s ≈ .  Similarly, for the samples of size 100

the theoretical value of the standard deviation for 100X  is 
100

4.045 .4045
10100X

σσ = ≈ = .  The

standard deviation computed from the data in Table 15.3 was 100 .49s ≈ .  We observe here the
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general effect predicted by Theorem 15.2, though a more impressive verification would require
collecting a larger number of replicates.!

Theorem 15.1 and Theorem 15.2  give us some information about the sample average random
variable, X .  Our next and last theorem tells us much more about the actual probability
distribution of X .  This theorem is a special case of a more general result in probability theory
known as the Central Limit Theorem, and so we refer to it by that name.

Theorem 15.3 (Central Limit Theorem): Suppose we have a bowl model for which the number
X  appearing on the balls has a (population) mean of µ  and a (population) standard deviation of
σ .  For independently drawn random samples of size 30n > , the sample average nX  has an

approximately normal distribution with mean µ  and standard deviation 
n

σ .  In other words,

( , )nX N
n

σµ≈ .!

A truly remarkable feature of this result is that the sample averages approach a normal distribution
no matter what the distribution of values X  on the balls in the bowl, as long as the samples are
drawn independently and the sample size is larger than approximately 30.  We will also use this
result and its corollary Theorem 15.4 below, when our bowl contains very many balls and we draw
a random sample without replacement that is comparatively small compared with the number of
balls in the bowl.  When the distribution of values in the bowl is not very mound-shaped it may
require sample sizes considerably larger than 30 before the normal approximation described in
Theorem 15.3 gives accurate estimates for the distribution of X .

Example 15.5: Draw the theoretical probability histogram for the random variable X  described in
Table 15.1.  Using a computer, generate 200 samples each of size 100 from the bowl model
described by this probability distribution and assess (via the Bell-Curve rule) how well the normal
distribution described in Theorem 15.3 fits the 200 sample averages.

Solution:

The histograms are shown below.  The distribution of the sample means appears reasonably bell-
shaped.
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To test the Bell Curve Rule, we list in the following table the sample averages for each of the 200
replicates.  For convenience in checking the Bell Curve Rule these have been arranged in
ascending order from left to right.

5.7 5.77 5.79 5.82 5.86 5.89 5.97 6.11 6.15 6.18 6.19 6.2 6.26 6.26 6.28 6.29 6.29 6.31 6.32 6.34
6.36 6.37 6.38 6.39 6.39 6.4 6.42 6.42 6.44 6.45 6.48 6.5 6.5 6.51 6.51 6.52 6.53 6.53 6.54 6.54
6.55 6.55 6.56 6.57 6.57 6.57 6.58 6.58 6.58 6.59 6.59 6.59 6.6 6.6 6.6 6.61 6.61 6.64 6.64 6.65

6.65 6.66 6.66 6.66 6.67 6.67 6.67 6.68 6.68 6.72 6.72 6.72 6.73 6.74 6.74 6.74 6.75 6.76 6.77 6.77
6.79 6.79 6.79 6.79 6.8 6.8 6.81 6.82 6.82 6.82 6.83 6.83 6.83 6.83 6.83 6.84 6.84 6.85 6.85 6.86
6.87 6.88 6.88 6.89 6.89 6.89 6.89 6.89 6.9 6.91 6.91 6.92 6.92 6.92 6.93 6.93 6.93 6.94 6.94 6.95
6.95 6.95 6.96 6.97 6.98 6.98 6.98 7 7 7 7 7.01 7.03 7.03 7.05 7.05 7.06 7.07 7.09 7.09
7.1 7.11 7.13 7.14 7.14 7.15 7.15 7.15 7.16 7.16 7.16 7.18 7.18 7.19 7.19 7.19 7.2 7.21 7.21 7.23

7.24 7.24 7.25 7.25 7.25 7.26 7.26 7.28 7.29 7.3 7.3 7.31 7.32 7.33 7.33 7.33 7.36 7.36 7.39 7.42

7.43 7.45 7.46 7.46 7.47 7.49 7.51 7.52 7.52 7.55 7.55 7.58 7.59 7.59 7.62 7.66 7.79 7.81 7.82 8.02

Table 15.4: Sample Means

The average value of the sample means in Table 15.4 is 6.87 (recall from Example 15.2 that the
mean for the population of all balls in the bowl is 6.875µ = ) and the standard deviation of the 200
sample mean replicates in Table 15.4 is 0.422.  This compares well with the theoretical value

(Theorem 15.2) of 4.045 .404
100

X

n
σ = ≈  (remember, the n  in the latter formula refers to the size of

each sample, not the number of replicates, 200).  We now find the fraction of replicates for which
the sample average falls in the intervals [ , ]x s x s− +  and [ 2 , 2 ]x s x s− + , where 6.87x =  and

0.422s = .  The reader can verify the results in the following table:

Interval # of sample means % of sample means
[ , ]x s x s− + [6.448,7.292]= 140 140/200 = 70%

[ 2 , 2 ]x s x s− + [6.026,7.714]= 189 189/200=94.5%

The percentages in column three are in close agreement with the Bell Curve Rule, as we might
have anticipated from the histogram given earlier.!
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The result of Theorem 15.3 is particularly important for the bowl model in which each ball has
either a “one” or a “zero”.  Recall that this provides a model of the situation in which we wish to
determine the fraction of a population that has a certain property, A .  A ball numbered “one”
denotes a member of the population having the property, while a ball numbered “zero” denotes a
member without this property.

Theorem 15.4 (Central Limit Theorem for Proportions): Suppose the fraction p  of a
population has a property A .  If we draw n  independent random samples from this population,
where 30n > , then the fraction of the sample that has property A , which we denote by p̂  (read

“ p  hat”) has an approximately normal distribution with p̂ pµ =  and p̂
pq
n

σ = , where 1q p= − .

Solution:

In our bowl model for this scenario the bowl contains balls numbered either “one” or “zero”.  We
let the random variable X  denotes the number on a selected ball.  This random variable takes on
only two values, 1 or 0, with probabilities p  and 1q p= − , respectively.  In other words, the
probability distribution table for X  is given by

X 0 1
( )P X k= q p

We then have that 0( ) 1( )X q p pµ = + =  and

2 2 2 2 2 2 2(0 ) (1 ) (1 ) ( )X X Xq p p q p p p q q p pq p q pqσ µ µ= − + − = + − = + = + =

so that X pqσ = .  When we take a sample from the bowl with replacement of size n , the sample
mean nX  is just the number of balls in the sample with a “1”, divided by the sample size n .  In
other words, it is the relative frequency of “ones” in the sample, or p̂ .  The conclusion of the
theorem is then a direct consequence of Theorem 15.3, using X pµ =  and X pqσ = .!

While the precise statement of Theorem 15.4 will be used in the next section, the reader should
appreciate the qualitative significance of the result.  The value of p̂  is always between 0 and 1; it
is centered around the true frequency p  with which property A  is present in the population and
the spread of p̂  around this central value p  becomes increasingly narrow as the sample size n
increases.  These ideas are illustrated in the histograms below that show the exact distribution of
p̂  when the true .5p = .  The graphs are scaled so that areas under each graph represent the

probability that p̂  will fall in a given range.  The decrease in the standard deviation, p̂
pq
n

σ = ,

as n  increases is evident from the histograms.  As n  increases, it becomes less likely that the
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frequency of success in a sample, p̂ , will deviate significantly from the true population frequency
p .

True p = .5, n = 30
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True p = .5, n = 60
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Figure 15.2(Distribution of p̂ )

The random variable p̂  introduced in Theorem 15.4 is simply the relative frequency of picking a
“one” in the sample of n  balls.  If we think of selection of a “one” as a success, and let Y  be the

number of successes in the sample of size n , then ˆ Yp
n

= .  From Chapter 14 section 14.5 we know

that Y  has a binomial distribution with probability of success p  and therefore for large n  behaves
like a normal distribution.  Since p̂  is just a rescaled version of Y , the fact that p̂  also has a
normal distribution should not be so surprising and in fact can be derived from the result
concerning Y .  Often, as in the following example, it is more direct to use Theorem 15.4 than to
convert the analysis back to a question regarding Y , the number of successes.

Example 15.6: Based on past experience an airline expects that 95% of those booking a seat on a
flight will actually show up.  If the airline sells 300 tickets for a flight what is the probability that
fewer than 92% of the purchasers will show up at departure?
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Solution:

We imagine a bowl with a large number of balls representing the population of all ticket
purchasers.  Balls with a “one” correspond to ticket holders who show up for the particular flight
and those with a “zero” represent purchasers who do not show up.  The assumption stated in the
problem implies that 95% of the balls have a “one”.  The 300 ticket holders constitute a sample of
size 300 drawn from the population of all ticket holders.  In order to apply Theorem 15.4 the
individual sample members must be drawn independently and at random.  In practice this is not
always the case as people often travel together.  We will ignore this complication.  In addition,
since people buy only one ticket the selection occurs without replacement, which also violates the
assumptions of Theorem 15.4.  Since the sample is small compared to the large number of possible
purchasers, the latter effect is negligible.  Thus we assume the ticket buyers are drawn randomly
from typical customers and their decisions regarding whether to show up or not are taken
independently.

The fraction of ticket buyers that actually show for the flight is a value p̂  for a sample of size 300.
According to Theorem 15.4, p̂  has an approximately normal distribution with mean equal to the

population proportion .95 and a standard deviation of (.95)(.05)
300 .013≈ , i.e. ˆ (.95,.013)p N= .  We

want to find the probability that ˆ .92p ≤ .  This we can now do using the usual procedures for
finding probabilities for a normal distribution.  Namely, using the tables in Appendix B we obtain

.92 .95ˆ( .92) ( ) ( 2.31) .01
.013

P p P Z P Z−≤ = ≤ = ≤ − ≈ ,

so that in approximately 1 such flight in 100 the rate of ticket holders that show up will fall below

92%.!

15.3 Confidence Intervals

A typical poll of voters might draw a random sample of about 1200 from a much larger population
of potential voters.  Let us assume that the sampling has been carried out so that those selected
have been chosen independently.  In practice, this means that the sampling technique must allow
the possibility that an individual can be polled more than once, although this will seldom actually
happen.  If 800 voters in the sample favor candidate A , what can we conclude regarding the true
percentage p  of the voting population that favors this candidate?

The quantity 800
1200ˆ .67p = ≈  can be taken as an estimate of p .  But how good is this estimate?

Since p̂  has a normal distribution with mean equal to p  (unknown) and standard deviation

ˆ 1200p
pqσ =  (also unknown), we can for instance say that there is a 95% chance that p̂  lies

within ˆ1.96 pσ , or about two standard errors, from p .  In the last section we viewed this statement
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as saying the interval of length ˆ1.96 pσ  around p , in other words ˆ1.96 pp σ−  to ˆ1.96 pp σ+ , has a
95% chance of containing the sample frequency p̂ .  Expressing it slightly differently there is
about a 95% chance that p̂  and p  differ by at most ˆ1.96 pσ .  This last statement, however, is
symmetric in p  and p̂ , i.e. if I say that you and I are within 10 feet of each other then an interval
10 feet wide drawn around either of us will contain the other.  In this case, this means that if
instead of drawing an interval of length ˆ1.96 pσ  around p , we draw an interval of the same length
around p̂ , then 95 percent of the time this will contain the true p .  Thus, we can say with 95%
confidence that the true value of p  lies in the interval

ˆ 1.96
1200

pqp −  to ˆ 1.96
1200

pqp + .

We know p̂  from the sample data, but we do not know p , so the interval above would seem
useless.  Note though that p  will be close to p̂ .  In the formula for the standard error, if we
replace the unknowns p  and q  by the sample values p̂  and ˆ ˆ1q p= −  the small error we make
will be further diminished because we are dividing the term pq  by the large denominator 1200.
This leads us to the important 95% confidence interval construction for an unknown population
frequency.

Rule 15.1 (95% Confidence Interval for p ): If a random sample of size 30n >  is drawn from a
population in which an unknown fraction p  possess property A , then if p̂  is the frequency of

the property A  in the sample, there is a 95% chance that the interval 
ˆ ˆˆ 1.96 pqp
n

−  to

ˆ ˆˆ 1.96 pqp
n

+  contains the true value of p .!

Example 15.7: Compute the 95% confidence interval for a population frequency p  based on a
sample of size 1200, if the sample frequency ˆ .67p = .

Solution:

Using Rule 15.1 the 95% confidence interval extends from 
ˆ ˆˆ 1.96 .643pqp
n

− =  to

ˆ ˆˆ 1.96 .696pqp
n

+ = .  Expressing the answer in percentage terms, we are 95% confident that the

true p  lies between 64.3% and 69.6%.  Another way to express this is to say that we are 95%
confident that 67% 2.7%p = ± .  The 2.7%  is sometimes called the sampling error of the poll.  It
provides an estimate of the likely uncertainty of our answer due to random variation in the selected
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sample.  The lower limit 64.3% placed on the true p  is called the lower confidence limit (LCL)
and the upper estimate, 69.6%, the upper confidence limit (UCL).!

Note that the width of the confidence interval obtained in Example 15.7 (i.e. the sampling error)
only depends on the size of p̂  and n .  It does not depend on the size of the underlying
population.  Thus a random sample of size 1200 from a population of 100,000 will have the same
!!!!

predictive value as the same size sample from a population of 10,000,000.  This is the underlying
reason why opinion sampling is so widely used.  Accurate prediction is possible for huge
populations with rather modest sized samples, if only the members in the sample are selected
randomly and independently.

However, we all know that predictions of polls are sometimes wrong.  Often this may be due to the
fact that there has been a change in frequency of the underlying population after the poll was
conducted.  Or, as with the infamous Literary Digest poll (see Chapter 7), the sampling may have
been biased.  It is important to understand though that even correctly done polls must sometimes
be wrong; in fact, the very meaning of 95% confidence implies that 5% of time the interval
produced by Rule 15.1 will not contain the true value of p .
!!!!
302

What we mean when we say, as in Rule 15.1, that there is a 95% chance that a confidence interval
contains the true value of p , is that when we repeatedly produce such intervals, 95% of them will
contain the true value of the population parameter p .  Whether a specific interval, such as the one
computed in Example 15.7, really contains the true p  is not a question that can be answered based
on the sample.  When we talk of a “confidence interval,” the confidence level with which we are
working describes the reliability of the method, not the reliability of any specific interval the
method produces.

For example, in the course of a long election campaign hundreds of polls will be produced in
which a 95% confidence interval is reported.  By the very nature of a 95% confidence interval,
approximately 95% of these predictions will be correct and approximately 5% will be wrong.
Unfortunately, we don’t usually have any way of deciding which predictions are correct and which
are not.  In the graphic below from the file confidence intervals.xls we have additional information
that enables us to determine which intervals actually contain the true p .  The simulation produces
twenty 95% confidence intervals from samples of size 60 from a population with known frequency
of .5p =  for some unspecified property.  Notice that two of these intervals fail to contain the true
value of p .  This is only a 90% success rate, but the 95% success that we refer to for our
construction is only meaningful when we produce a large number of such intervals.
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The 95% confidence interval is certainly the most commonly used interval estimate for an
unknown population frequency p .  However, investigators may want less uncertainty or
sometimes are willing to accept more uncertainty in their results.  For example, suppose we would
be satisfied with an interval that has a 90% chance of containing the true frequency p .  We have
only to refer to the standard normal distribution and ask what interval from 0z−  to 0z  has a total
area of about .90.  Referring to the figure below

Figure 15.3

the shaded area is to have area 0.9 and therefore the area below 0z  must be .95.  From Appendix B
we find that 0 1.65z = .  In a similar way we can find the coefficients required to construct the
confidence intervals listed in the following table.  The tech notes at the end of the chapter show
how these and other confidence coefficients may be found directly using Excel.
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Rule 15.2 (Confidence Coefficients): If *z  is the confidence coefficient in Table 15.5, the
interval *

ˆˆ pp z σ±  gives a confidence interval with confidence level as specified in the table.

Confidence Level (%) Confidence coefficient ( # of standard errors)
90 1.65
95 1.96
98 2.33
99 2.57

Table 15.5 !

Example 15.8: Referring to the Example 15.7 construct a 99% confidence interval for the true
value of p .

Solution:

According to Rule 15.2 the 99% confidence interval extends from ˆˆ 2.57 pp σ−  to ˆˆ 2.57 pp σ+ .

Using the estimate for the standard error (.33)(.67)
1200ˆ .014pσ ≈ ≈  given in Example 15.7 we obtain

the confidence interval 67% 3.5%± .  Notice that while we have higher confidence than in
Example 15.7 that the interval contains the true value of p , the price for that increased confidence
is a less precise determination of the location.  In general, if the sample size is fixed there is a
tradeoff between the narrowness of the confidence interval and the certainty (confidence level) that
it contains the quantity you wish to estimate.  This is clear from the fact that the confidence
coefficient (and therefore the size of the confidence interval) increases as the confidence
percentage rises.!

So far we have examined the process of estimating a population frequency.  Similar considerations
apply using Central Limit Theorem (Theorem 15.3) to estimation of a population mean.

Rule 15.3 (Confidence Intervals for Means): Suppose we independently draw a random sample
of size 30n >  from a bowl model with mean µ  and standard deviation σ .  If the sample mean is
x  and the sample standard deviation is s  then confidence intervals for µ  have the form

* sx z
n

−  to * sx z
n

+ , where *z  is the confidence coefficient in Table 15.5 for the particular

confidence level desired.!

The reasoning behind this result parallels that of Rule 15.1 for proportions.  The random variable

nX  has an approximately normal distribution with mean µ  and standard deviation X n
σσ = .

Although σ  is not known, it only appears in a formula in which it is divided by a large number
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n , so that approximating it with s  does not cause an appreciable error.  Hence the given
estimates.

Example 15.9: 100 patients are treated with a new cancer therapy.  The average length of time the
patients are in remission is 3.7 years, with a standard deviation of 1.3 years.  Assuming the patients
represent a random selection of patients with this type of cancer, find a 95% confidence interval
for the expected time in remission for all patients receiving the treatment.

Solution:

According to Rule 15.3 the 95% confidence interval extends from 1.33.7 1.96 3.4
100

− ≈  to

1.33.7 1.96 4.0
100

+ ≈ .  We have 95% confidence that the true average time in remission is

between 3.4 and 4.0 years.  Explicitly stating the confidence interval is good practice, but it is not
universal.  For instance, many investigators express “error bounds” as

1.3SE 3.7 3.7 0.13
100

x ± = ± = ± .  This of course gives a smaller interval than the 95% confidence

interval, but only has about a 68% chance of containing the true value of µ .  Sometimes the
estimate is stated as 2 3.7 2.6x s± = ± .  In this case the investigator is trying to convey information
about the variation in the individual times to recurrence, rather than the precision in the
determination of µ , for which the standard error is the appropriate yardstick.  The use of the 2s±
implicitly assumes these times are approximately normally distributed, which is probably incorrect
in this case.!

We have seen above that the width of the confidence interval depends on the sample size n  as well
as the variability of the population.  As long as the sample size is larger than 30 the methods
discussed above can be used to produce confidence intervals.  However, the sampling error in
these intervals (i.e. the width of the confidence interval) may be too large to be useful.  For
example, if we are trying to estimate the incidence of some environmentally caused illness and we
obtain a sample value of ˆ 0.04p =  with a sampling error of 0.05± , we really have not learned
anything.  In fact, the confidence interval contains the value zero and therefore the incidence of the
disease could actually be extremely low or it could be as high as 9 or 10%.  In this case we would
have to redo the study with a more appropriate sample size, if that is feasible.  How large a sample
size is needed?

Example 15.10: Suppose in a target population a disease has an incidence of about 10%.  If you
want to do a study to estimate the incidence and to produce a 95% confidence interval with a
sampling error of at most 1%, how large a sample must you include in your study?

Solution:
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The 95% confidence interval has a sampling error of 
ˆ ˆ

1.96 pq
n

.  Based on the prior information

we take ˆ .1p =  and ˆ .9q = .  We then need to find the smallest value for n  such that
(.1)(.9)1.96 .01

n
= .  Squaring both sides of this equation yields .093.8( ) .0001

n
= , and solving for

n  we find 3420n ≈ .!

15.4 Small Samples

The discussion to this point has required that the sample size be relatively large.  However, many
investigations by experimenters with limited resources of time and/or money are necessarily done
with small samples.  Is it possible to draw conclusions from such studies?  This is usually the case,
but additional assumptions may be necessary and the conclusions are usually not as accurate as
those based on large samples.  We describe some of the ideas here but refer the reader to more
specialized texts in statistics for a comprehensive treatment.

Estimating a population proportion from a small sample does not produce very reliable results.
For example, from section B.4 we see that if we find 10 successes in 20 trials then the value of
ˆ .50p = , but the 95% confidence interval for the unknown p  extends from .30 to .70, so we have

very little certainty as to the true location of p .  The results in section B.4 were obtained using the
exact binomial distribution, rather than the normal approximation that is appropriate for larger
sample sizes.  Nonetheless, Rule 15.1 yields approximately the same results.  For example, in the
case considered above the 95% confidence interval derived from Rule 15.1 is the interval
[ ].28, .72 , fairly close to the exact 95% confidence interval.  When using small samples to estimate
proportions, one often is willing to accept a smaller level of confidence to obtain somewhat
sharper bounds for the unknown probability.  In this case, 10 successes in 20 trials, an 80%
confidence interval for the true p  extends from .38 to .66.

When we wish to find a confidence interval for an unknown population mean based on a small
random sample, we can no longer rely on the applicability of Central Limit Theorem (Theorem
15.3) to the distribution of the sample mean X .  Rather, we must make the additional assumption
that the quantity X , whose expected value µ  we are interested in, has itself a normal distribution
with mean µ  and standard deviation σ .  In this case, it turns out that regardless of the sample size
n  the sample mean nX  will also have a normal distribution with mean µ  and standard deviation

nσ .
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Example 15.11: Classification of a person as mildly hypertensive (high blood pressure) is often
based on a diastolic pressure reading in excess of 90 mm Hg.  Assume a person’s blood pressure
readings show a normal distribution when taken on different occasions.

a) If a person is classified as hypertensive based on a single reading and the true average diastolic
pressure for that person is 80 mm Hg with a standard deviation of 7 mm Hg, what is the
likelihood of a misclassification?

b) If we use the average on four independent pressure readings as the basis of the classification,
what is the likelihood of misclassifying the individual in a)?

Solution:
a) If X  denotes the pressure reading at an arbitrary occasion we are assuming that (80,7)X N= .

The probability that 90X >  is then given by

90 80( 90) ( ) ( 1.43) 0.08
7

P X P Z P Z−> = > = > ≈

b) Under the stated method the classification is done with the sample average
1 2 3 4( ) / 4X X X X X= + + + .  The assumption that each reading is normal and that the readings

are made independently implies that X  also has a normal distribution with mean 80 and
standard deviation 4 2 3.5σ σ= = .  Repeating the calculation in a) we have

90 80( 90) ( ) ( 2.86) 0.002
3.5

P X P Z P Z−> = > = > ≈

Thus only about 0.2% (1 out of 500) of such patients would be misclassified, as opposed to
about 8% using the first method.!

If the standard deviation happens to be known, then confidence intervals for the unknown mean µ
can be constructed from values of X  according to Rule 15.3, with s  replaced by the known value
of the standard deviation σ .  However, in most situations of this type σ  is also not known, and
then using the recipe of Rule 15.3 does not produce correct results.  The trouble arises because we

are using the quantity s  in the formula * sx z
n

± , rather than the unknown σ .  When n  is small

we cannot neglect the error incurred through this approximation.  To continue using the sample
standard deviation s  the formula must be modified by replacing the coefficient *z  that is taken
from Table 15.5, with a coefficient based on areas beneath a family of bell-shaped (non-normal)
distributions known as Student’s t , or simply t  distributions. (Student was the pen name used by
the discoverer of these distributions, W. S. Gossett.)  Figure 15.4 below shows three examples of
these density curves (labeled 1, 4, 16f f f= = = ) together with the standard normal density.
Following the traditional practice, we denote a random variable with a Student distribution using
lower case t , rather than capital T  as our conventional notation would require.
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Figure 15.4 (Student’s-t & Normal Density)

If our sample has size n  then instead of *z  we must use a coefficient *
1nt −  based on the confidence

level and the sample size.  The quantity 1f n= −  is referred to as the number of degrees of
freedom for the particular Student distribution.  The precise construction of the confidence interval
is given in Rule 15.4.

Rule 15.4 (Confidence Intervals for Means from a Normal Distribution): Suppose we are
sampling from a bowl model which has a normal or approximately normal distribution, but for
which both the mean µ  and standard deviation σ  are unknown.  If a sample of size n  has sample
mean x  and sample standard deviation s  then confidence intervals for µ  have the form

*
1n

sx t
n−−  to *

1n
sx t
n−+ , where *

1nt −  is the confidence coefficient for the particular confidence

level desired, based on a t  distribution with 1f n= −  degrees of freedom.!

The table below gives representative values for the coefficients *
ft  for various degrees of freedom

and confidence levels of 95 and 98 %.  These numbers are defined for the Student distributions as
they were for the standard normal distribution (see Figure 15.3).  The tech notes describe the Excel
command needed to find these quantities.  Section B.5 contains a more extensive table of these
values.  The column headed ∞  refers to the confidence coefficients for the normal distribution.  As
is evident from the table, the corresponding coefficients for the t  distribution exceed these, but
approach the latter values as the number of sample values increases.  When n  exceeds 30 there is
usually little practical difference in using the coefficient from the t  distribution or the coefficient
based on the normal distribution, in which case Rule 15.4 reduces to the previously stated Rule
15.3.
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Degrees of Freedom f

Confidence % 1 5 10 15 20 25 30 ∞
95 12.71 2.57 2.23 2.13 2.09 2.06 2.04 1.96
98 31.82 3.36 2.76 2.60 2.53 2.49 2.46 2.33

Table 15.6 (Confidence Coefficients for Student’s-t)

Example 15.12: A random sample of 21 grades (below) was selected from a collection of 285
grades on a final exam.  See data file grades.xls.  Find a 95% confidence interval for the mean
grade of the entire set.

Solution:

The selected grades are given below:

27 30 80 86 54 80 52 60 88 56 97
70 57 60 69 39 48 37 5 60 78

The mean and standard deviation for these grades are 58.7 and 22.8 respectively.  Assuming the
totality of grades is normally distributed or close to normally distributed, the upper and lower
confidence limits can be computed from Rule 15.4, using Table 15.6.  Since the sample size

21n =  we use the entry in Table 15.6 for the number of degrees of freedom 1 20f n= − =  and the
confidence level 95%.  We then obtain

22.8LCL 58.7 2.09 48.0
20

22.8UCL 58.7 2.09 69.4
20

= − ≈

= + ≈

In this case, the actual mean for the entire population can be computed.  The result is 63.9, which
lies inside the confidence interval from the LCL to the UCL, as we have strong reason to believe it
will.!

As a final remark, we recall that in Chapter 7 when we introduced the standard deviation we noted
in its definition the somewhat unnatural choice of denominator 1n − , rather than n .  The choice of

1n −  gives a quantity that better approximates the standard deviation of the population and the
accuracy of this approximation is important in the small-sample estimation we have discussed in
this section.

15.5 Tech Notes

The confidence coefficients that we have exhibited in Table 15.5 and Table 15.6 can be easily
computed using the Excel functions normsinv and tinv.
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Example 15.13:
a) Find the confidence coefficient for the normal distribution corresponding to a confidence

percent of 98%.

b) Find the confidence coefficient for a Student- t  with 8 degrees of freedom and a confidence
percent of 98%.

Solution:

a) Using a diagram similar to Figure 15.3, we need a value 0z  such that 0 0( ) .98P z Z z− ≤ ≤ = ,
where Z  has a standard normal distribution.  Using the symmetry of the distribution this is
equivalent to the condition 0( ) .99.P Z z≤ =   The function normsinv accepts as an argument an
area (probability) and produces the value of 0z  for which the area to the left of 0z  has the
desired probability.  In this case enter =normsinv(.99) and you get the answer 2.326.

b) The reasoning is similar as in a) except we use the function tinv.  This function requires two
inputs.  The first is the area in the two tails, i.e. the value of 0 01 ( ) .02P t t t− − ≤ ≤ = .  The
second is the number of degrees of freedom.  Thus we enter =tinv(.02,8) and obtain the value
2.896 for the coefficient.!

Excel can also be used to compute exact confidence intervals for the binomial parameter p  (see
section B.4).  However, the computational methods are beyond the level of these notes.

In the next chapter we will want to compute probabilities associated with Student’s distribution,
rather than simply the coefficients associated with tail probabilities.  Since there are a large
number of Student distributions it is impractical to provide tables similar to those used for the
normal distribution (section B.3).  However, Excel has a command that can be used for this
purpose.  Specifically,

Example 15.14: If t  has a Student distribution with 5 d.f. (degrees of freedom), find

a) ( 2.5)P t ≥

b) ( 2.5)P t ≥

c) ( 2.5)P t <

Solution:

a) Enter the command =tdist(2.5, 5, 1).  This gives the area in the right tail of the distribution, i.e.
for 2.5t ≥ .  You obtain .027.  The last argument, 1, indicates that only the area in one tail is
computed.
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b) Enter the command =tdist(2.5,5,2).  This gives the area in both the right and left tails (hence
the 2 as the last argument), i.e. when 2.5t ≥  or 2.5t ≤ − .  By the symmetry of the t
distribution the result is twice the probability associated with a single tail (part a).

c) Enter =1 -tdist(2.5,5,1), since the event 2.5t <  is the complement of 2.5t ≥ .!

15.6 Summary

In statistical estimation we try to obtain reliable estimates of population parameters, such as the
mean or a probability, from a numerical quantity computed using a sample.  In this chapter we
discussed how the sample mean can be used to estimate the population mean, or, as a special case,
how the sample proportion can be used to estimate a true proportion in a population.

A simple, but important idea, is to regard a sample mean as not just a number, but as a random
variable whose value varies from sample to sample.  Provided the samples are chosen in a suitably
random fashion, the distribution of the sample mean has the same expected value as that of the
underlying population, i.e. XXµ µ= , but a smaller standard deviation.  In fact, the standard

deviation of X , also called the standard error (SE), is X

n
σ , where n is the sample size.  When n

is large this implies that individual values of X  will tend to fall not far from their expected value
Xµ .  A more precise statement can be made based on the Central Limit Theorem: When 30n >

the random variable X  has an approximately normal distribution with mean Xµ  and standard

deviation X

n
σ .

The latter result leads to the construction of confidence intervals for unknown population
parameters such as µ  and p.  A confidence interval is an interval constructed from a sample that
has a specified probability of containing the unknown population parameter. For any given
construction of a confidence interval, the true value of the population parameter may or may not
lie in the constructed interval.  But, for example, approximately 95% of all 95% confidence
intervals will actually contain the parameter that supposedly is being estimated by the construction.

When the sample size is small, we may not be able to use the normal distribution to construct
confidence intervals.  Under suitable assumptions, a similar construction of confidence intervals
may be carried out based on a family of distributions known as Student’s-t.  The following table
summarizes the schema we have developed in this chapter to estimate means.
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Type of Random Variable "
Sample Size #

X  arbitrary non-normal X  normal

Small Sample ( 30n < )

Use non-parametric methods
(not covered).  The data can
sometimes be transformed (via
logs for example) to get a
normal distribution.

1. If σ  is known, use z
coefficients and normal
theory

2. If σ  is unknown, estimate
with s  and use Student- 1nt −

Large Sample Estimate σ  with sample standard deviation s  and use normal
theory ( z  coefficients)

15.7 Exercises

1. Each of the following describes a certain statistical investigation.  In each case formulate the
investigation in terms of a bowl model; i.e. describe the composition of the bowl, the
information recorded on the balls and the computation(s) made by the investigator.

a) A certain species of plant produces flowers that are either red or white.  Two red flowering
plants are crossed and 500 seeds from the cross are raised to mature plants.  To test an
inheritance model we need to know the frequency of the two flower colors among these
mature offspring.

b) A college with approximately 3000 first year students wishes to do a survey to estimate
these students’ average weekly beer consumption.

c) A school system wants to order some classroom seats with the writing surface on the left,
which is more convenient for person’s who are left-handed.  The administrators want a
survey performed that will provide an estimate of the number of left-handed students.

d) A person’s blood pressure reading (either systolic or diastolic) is often different in the right
and left arms, even when taken at the same time.  You wish to determine an average value
for this difference in adults with normal pressure.

e) Polyps are benign tumors of the large intestine that are implicated in the development of
colon cancer.  You wish to compare the incidence of polyp recurrence over a period of four
years in 3000 men who had previously had such a growth removed and are placed on a
strict low-fat, high fiber diet, with a similar (control) group who are simply told to follow a
prudent diet.

2. In Chapter 10 exercise 11 we described a tetrahedral die with four faces numbered 1,2, 3, 4
each of which has equal chance of facing down (counted) when the die is tossed.

a) If X is the value of a single toss, find the average and standard deviation for X.

b) Find the probability distribution for the average 1 2( ) 2X X X= +  of two independent
tosses of the die.
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c) Using the probability distribution in b) compute Xµ  and Xσ  and verify that you get the
same answers as those predicted by Theorem 15.1 and Theorem 15.2.

d) Use Excel’s random number generator (see section 13.5.2) to simulate 100 pairs (two
columns) of independent tosses of a single tetrahedral die.  In a third column, compute the
average tossed for each pair to obtain 100 samples of the random variable X .  Compare
the sample average and standard deviation for these 100 values of X  with the theoretical
values you found in c).

3. The top row below displays density functions for two continuous random variables labeled X
and Y , each of which has mean two and standard deviation two.  The bottom panel displays
box plots for the average of 100 independent samples taken from each random variable.  In
each case, one box plot used samples of size 10 and the other used samples of size 100.

a) In each box plot displayed in the bottom row identify which plot (series 1 or series 2) came
from the replications using samples of size 10 and which from samples of size 100.  Justify
your answer.

b) Identify which box plots came from sampling random variable X  and which from Y .
Justify your answer.
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4. A certain game is played according to rules that produce the following probability distribution
for the winnings X  on a single play. (A negative value for X  denotes a loss to the player.)
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X  ($) 5 -5 -10
( )P X x= .65 .25 .10

a) Find ( )E X  and Xµ .

b) You play 10 independent games.  Let X  denote your average winnings in 10 games.  What
are the expected value and the standard deviation of X .

c) Use Excel to simulate 200 replications of playing this game 10 times, i.e. generate 200
columns of data in which each column uses the probability distribution in a) to give the
results of 10 plays.  Use these 200 replications to estimate the theoretical expected value
and standard deviation found in b).

5. a) You toss a fair coin 100 times.  Your friend tosses a similar coin 25 times.  Which of you is
more likely to have at least 60% of the tosses turn up heads?

b) A small city has two hospitals.  One delivers on average 100 babies a day, the other about
25.  Which one has a greater chance that more than 60% of the babies delivered on a day
will be boys?

6. Open the file sampling.xls.  This file allows you to draw samples from a hidden sheet
containing a large number of 0s and 1s, which represents a bowl model consisting of white
beans (0s) and red beans (1s).  Each sample of size n  provides an estimate ˆnp  for the
frequency p  of 1s in the bowl.

a) On the top sheet (sheet 1) use the button provided to generate 20 samples of size 10.
Compute the value of 10p̂  for each sample.  Use the values of 10p̂  to estimate 10ˆ( )E p  and

10p̂σ .

b) Repeat the steps in a) but using 20 samples of size 100 on sheet 2.  Use the values of 100p̂
to estimate 100ˆ( )E p  and 

100p̂σ .  You should find that 10 100ˆ ˆ( ) ( )E p E p≈ , but in theory 
10p̂σ

should be about 3 times larger than 
100p̂σ .  Explain why and comment on any discrepancies

between theory and data.

c) Use the 95% confidence limits given in section B.4 to find confidence intervals for the true
p  for each of the samples 10p̂  in part a).  Using Rule 15.1 find 95% confidence intervals

associated with each value 100p̂  in b).

d) In part c) you constructed forty, 95% confidence intervals.  About how many of these will
fail to contain the true value of p ?  Using the best estimate for p  based on the information
you have gathered in the problem, determine which of the confidence intervals actually do
not have the true p .

7. a) Explain the difference between the terms standard deviation and standard error.
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b) What is meant by the expression “sampling error”?

c) What is meant by a confidence interval?

8. A sample of 50 girls in a junior high school had an average height of 60 inches, with a standard
deviation 2.5s =  inches.

a) What is the standard error (SE) for this sample?

b) Explain the difference in meaning between the reported intervals 60 1.96s±  inches and
60 1.96 SE±  inches.

9. On the basis of past performance a professor expects that the average score on the mid-term
exam will be 75 out of 100.  In previous years the standard deviation of the individual scores
has been around 10 points.  What is the probability that the average score for his current class
of 40 students will be below 72?  What assumptions about this group of students are you
making when performing this calculation?

10. An airline claims that 92% of its flights meet the criterion for being classified as on-time.  A
consumer group wishing to monitor this claim checks the flight records for 75 randomly
selected flights.  They find that 60 of the sampled flights satisfy on-time status.  If the airline’s
claim is true, how likely is it that the sample would have included as few as 60 flights fulfilling
the on-time status?

11. Using the table of the standard normal distribution (section B.3) derive the confidence
coefficients in Table 15.5.

12. Using the normal approximation, estimate the 80% confidence interval for p  when 20n =  and
the observed frequency ˆ 0.3p = .  Compare your answer with the Table in section B.4.

13. Suppose that the true 0.4p =  and we use a sample of size 20.  Using the construction of the
80% confidence intervals given in the table of section B.4 find the exact probability that such
an interval contains the true value 0.4p = .  Is your answer close to 0.80?

14. According to a New York Times report (3/21/00), in the fall of 1999 the New York City
Department of Health tested blood samples of 677 anonymous donors in northern Queens.
Nineteen tested positive for the antibodies to West Nile virus.

a) Find a 95% confidence interval for the fraction of the entire population of that community
that had been infected with the virus.

b) If the area in which the donors lived had a total population of 46,000, what estimates could
you give for the number of people in that area who had been infected with the virus?

15. The file confidence intervals.xls allows you to construct 20 confidence intervals for a selected
population frequency by taking random samples from a population with a known value of p .
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a) Select two different values of p  and run the simulation (with a 95 % confidence level)
three times for each value of p .  In total you will have constructed 120 confidence
intervals.  How many should you expect will not contain the true value of p ?  Is your
expectation confirmed?

b) If the true p  is around 0.4, determine how large the sample size must be so that a 98%
confidence interval will produce an error of at most three percentage points in the estimate
of p .  Run the simulation with the computed sample size, .4p ≈  and confidence level
98%.  Verify that the results confirm your expectations, i.e. size of confidence intervals and
frequency with which they contain the true value of p .

16. (Capture-recapture) How do ecologists estimate the number of fish in a lake?  Suppose you are
working in fishery management.  You go out on the lake and capture 100 fish of the type you
are interested in counting.  These fish are marked and released.  After a period of time to allow
the fish to disperse, you catch say 75 of this type of fish and observe 7 of the ones you marked.
(Assume you toss fish back into the water after capture and you move around the lake after
each fish is caught.)

a) Find a 95% confidence interval for the percent of fish in the lake that have been marked.

b) Using the answer to a) give upper and lower bounds for the fish population in the lake.

17. In estimating an unknown population frequency p  using confidence intervals, comment on the
truth or falsity of the following assertions.

a) A 90% confidence interval using 150n =  has a higher chance of containing the true value
of p  than the same confidence interval based on a sample of size 50.

b) A 90% confidence interval using 150n =  gives a narrower estimate of p  than the same
confidence interval based on a sample of size 50.

c) If the sample size is the same, then a 95% confidence interval for p  is more “accurate”
than a 90% confidence interval.

18. A survey of 1500 voters across the country showed that 885 would be willing to pay $200
more a year in taxes to support improved schools.

a) Find a 95% confidence interval for the true fraction of all voters who support the proposal.

b) How many voters would have to be surveyed to obtain an estimate which with 95%
confidence deviated from the true fraction by at most one percentage point.

19. The NY Times usually publishes a brief explanation of the statistical meaning of the results of
surveys that it commissions.  Typical wording is quoted below:
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How the Poll Was Conducted
The latest NY Times/CBS News Poll is based on telephone interviews
conducted Dec. 6th to 9th with (a certain number) of adults throughout the
United States.

(There follows an explanation of how a random sample was obtained.)

In theory, in 19 cases out of 20 the results based on such a sample will
differ by no more than three percentage points in either direction from what
would have been obtained by seeking out all American adults.

a) Using the information in the quoted paragraph, what is the minimum number of adults that
should have been included in the sample? (Hint: If we know nothing about p , then the
maximum value of (1 )pq p q= −  is 0.25.)

b) Assuming the sample used was the size you computed in a), if the fraction that responded
favorably to a question was 0.4, find a 98% confidence interval for the true value of p .

20. A study of blood cholesterol levels of 189 men in the age group 36 to 45 yielded a sample
average of 2.42 mg/cc with a standard deviation of 0.43 mg/cc.  Determine a 95% confidence
interval for the mean cholesterol blood level for men in this age group.

21. Construct a 98% confidence interval for the mean height of a population of males if a random
sample of 125 yielded a mean of 70 inches with a standard deviation of 2 inches.

22. A clairvoyant claims to be able to read people’s minds.  As a test, you agree to sit in one room
and to concentrate for several minutes on a photo of the head or tail face of a coin.  Sitting in
an adjacent room and exercising similar concentration, the clairvoyant states his opinion of
which face is being shown to you.  The photo is then randomly “flipped” and the process
repeated.  Suppose that a test of this sort produced 15 correct responses from the clairvoyant
out of 20 attempts.  What statistical or probabilistic arguments would you use to interpret the
results?

23. a) Using the table in section B.5 find the confidence coefficients for the following Student
distributions and confidence levels:

i) 10f = , confid. level = 90%

ii) 15f = , confid. level = 99%

iii) 40f = , confid. level = 95%

b) Using Excel find the confidence coefficients for the following Student distributions and
confidence levels:

i) 5f = , confid. level = 80%

ii) 10f = , confid. level =75%

iii) 25f = , confid. level = 80%
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24. An anti-arrhythmic drug is used to correct abnormal heart rhythms.  For example, a patient in
atrial fibrillation may have a resting heart rate of 150 - 200 beats/minute and this needs to be
brought under control.  A new anti-arrhythmic drug is tested on 8 patients experiencing
elevated resting heart rates.  Each patient is given the same dose of the medication and his or
her heart rate is recorded before and one hour after drug administration:

Rate Before Rate After Difference Rate Before Rate After Difference
Patient 1 175 110 65 Patient 5 145 85 60
Patient 2 135 92 43 Patient 6 150 100 50
Patient 3 180 100 80 Patient 7 180 95 85
Patient 4 200 95 105 Patient 8 160 100 60

Use the data to find a 95% confidence interval for the mean difference in heart rate attributable
to the medication.  What probabilistic assumptions are we making when we perform this
statistical analysis.

25. The need for prophylaxis to control blood pressure is based on measurements of pressure taken
during office visits to a physician.  To limit unnecessary use of medication or dietary
restrictions, in borderline cases the diagnosis should not be made based on a single reading.  A
doctor records the following four diastolic readings for a patient over a four-week period { 95,
82, 79, 84} (in standard pressure units of mm Hg).  According to current standards, an adult
with diastolic readings between 90 and 99 should be classified as Stage 1 (mildly)
hypertensive.

a) Using a 95% confidence interval, decide how to classify this patient.

b) What statistical assumptions are we making about the blood pressure readings when
carrying out the analysis in a)?

26. Open the file ny_weather.xls.  Using the command =randbetween(6,136) select a random
number between 6 and 136 (the row indices) and record the average temperature for the year in
the row with that random number as its row index.  Repeat this 10 times to obtain a random
sample of 10 data values for the average annual temperature.

a) Provide suitable evidence that the complete population of yearly temperatures has a normal
distribution.

b) In view of a), use your sample data values and a suitable t  coefficient from table in section
B.5 to find 90 and 95% confidence intervals for the average annual temperature in Central
Park over the 130 years.

c) Find the true average and see if the confidence intervals you constructed in b) contain the
true value of the mean.

d) Suppose we had conducted the sampling by selecting at random a data value from each
decade (excluding the year 1869 from the sampling).  Would this sampling process
constitute what we have called a  random sample from the entire population?  Explain.
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