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12 Probability and Genetics
Hutz: Ladies and gentlemen, I'm going to prove to you not only that
Freddy Quimby is guilty, but that he is also innocent of not being
guilty.  I refer you to my expert witness, Dr. Hibbert.
Hibbert: Well, only one in two million people has what we call the
“evil gene”.  Hitler had it, Walt Disney had it, and Freddy Quimby has
it.
Hutz: Thank you, Dr. Hibbert.  I rest my case

From: The Simpsons

12.1 Basic Terms

We assume the reader is familiar with the basic ideas of genetics as proposed by G. Mendel in the
19th century.  The traits of an organism (its phenotype) are controlled (at least in part) by factors
called genes, which can be passed from the parents to the offspring through sexual reproduction.
Mendel proposed this mechanism as an explanation for the observed pattern of phenotypes that he
obtained in numerous systematic crossings of pea plants.  The physical existence of genes and the
explanation of how they function occurred much later.  We recall some basic vocabulary in the
subject as it is presented today.

Gene: A portion of DNA that encodes for a protein.  The human genome consists of
approximately 30,000 genes.

Chromosome: The physical unit in the cell that contains the genes and which is passed to the
offspring as the basic unit of inheritance, possibly with some alteration.  In diploid cells the
chromosomes are present in pairs, called homologous chromosomes. (46 chromosomes or 23 pairs
in humans)

Locus: The physical portion of a chromosome that contains a particular gene.

Allele: A variant form of a gene, designated 1 2, , nA A A…  if there are 3n ≥  forms, but ,A a  if there
are only two forms and A  if there is only one.

Gamete: The male and female sex cells.  These contain one chromosome from each homologous
pair and thus have half the number of chromosomes of a somatic cell (referred to as haploid cells.)

Zygote: A fertilized cell obtained from joining a male and female gamete.  This cell contains the
diploid or full number of chromosome pairs.

Genotype: The pair of alleles of a given gene or genes that appear at a particular locus.  The
genotype describes the possible gametes which can be formed by the adult, ignoring mutations and
crossovers.

Phenotype: The actual physical characteristic produced by a genotype.
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We will apply the counting methods we have developed and the basic notions of probability to
some typical problems in the genetics of individuals and population.  These results can be found in
most books on genetics or population ecology.  Our intent is to emphasize the mathematical unity
behind the solution of these problems.

12.2 Counting Problems

We first consider problems of enumerating the genotypes.  The physical relationship between
genes and chromosomes complicates the counting.  The essential biological point to bear in mind
is the following principle:

Principle of Equivalence: Interchanging all the alleles from one chromosome in a homologous
pair to the other doesn’t change the possible gametes that the adult can produce with respect to the
given genes.  Hence, we must count these as one genotype.

Most of the enumeration problems one encounters in genetics can be handled using the
multiplication principle of counting, with the results adjusted to take into account the Principle of
Equivalence.  This is exhibited immediately in the first example.

Example 12.1: List the possible genotypes if there are two alleles A  and a  at a particular locus.

Solution:

Suppose the pair of homologous chromosomes is #1 and #2.  There are two choices for the allele
on chromosome #1, namely A  and a .  Each of these can be paired with allele A  or a  on
chromosome #2.  The multiplication rule implies that there are 2 2 4× =  ways to make the two
assignments, namely , ,AA Aa aA  and aa .  But the two selections Aa  and aA  arise from
switching the allele assignments.  According to the Principle of Equivalence these two
arrangements count as a single genotype.  Thus there are only three genotypes, , ,AA aA and aa .!

Example 12.2: List the possible genotypes if there are three alleles 1 2 3, ,A A A  at a locus.

Solution:

As in Example 12.1 the multiplication principle implies that there are nine ways of assigning the
two alleles to the chromosome pair.  However, this counts as distinct choices, for example, 1 2A A
and 2 1A A , which according to the Principle of Equivalence describe the same genotype.  There are
6 mixed assignments of this sort and we must only count half of them; the other three should be
discarded.  Thus, from the original count of 9 we are left with 6 distinct genotypes.  These are the
three homogeneous types (homozygotes) 1 1A A , 2 2A A , 3 3A A  and three heterogeneous types
(heterozygotes) 1 2A A , 1 3A A , 2 3A A .!
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We often want to categorize the genotype with respect to two different loci.  The alleles at one
locus will be designated 1 2, ,A A …  (or A  and a  if only two alleles), while the alleles at the other
locus will be designated 1 2, ,B B …  (or B  and b  if only two alleles).  In this case we will see that
the number of genotypes depends on whether the loci are part of the same homologous pair or on
different pairs.

Example 12.3: If there are two alleles at each of two loci on different pairs of chromosomes, how
many genotypes are possible with respect to the two loci?

Solution:

From Example 12.1 we can assign three genotypes to locus 1, namely , ,AA Aa  and aa .  These can
be paired with the three possible genotypes , ,BB Bb  and bb  available at locus 2.  The
multiplication principle implies that with respect to the two loci there are 3 3×  or nine genotypes.
We denote these, for example, by //Aa Bb , where the entry before the double slash indicates the
genotype on the first locus (which only involves the A  gene), and the second term indicates the
genotype on the second locus (which only involves the B  gene).  The double slash denotes that the
genes are on different chromosome pairs.!

Example 12.4: If there are two alleles at two different loci on the same chromosome pair, how
many different genotypes are possible?

Solution:

On each homologous chromosome in the pair there are four possible arrangements at the two loci:
, , ,AB Ab aB ab .  The second chromosome in the pair can also receive one of these four

arrangements.  The multiplication principle gives 16 ways of assigning the alleles to the two
chromosomes.  However, we have to take into account the Principle of Equivalence.  For example,
using a single / to separate the two chromosomes in a homologous pair, the combination /Ab aB
describes the same genotype as /aB Ab .  How many such redundancies are there?

A redundancy will occur when the arrangement involves different choices for the two
chromosomes.  We can select the assignment for the first chromosome in any of four ways, but we
then have only three selections available for the second chromosome, if we want the two selections
to differ.  The multiplication principle implies that there are 12 arrangements of this sort, and by
the Principle of Equivalence, half of them are redundant.  Thus we are left with 16 6 10− =
genotypes.

It seems perhaps paradoxical that there are more genotypes in the case considered here than in the
previous example.  However, taking into account the second locus on the chromosome effectively
makes the two homologous chromosomes somewhat more distinguishable from each other and
leads to the greater number of possibilities.!
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As the previous examples show, the number of genotypes grows very quickly with even a small
number of modestly polymorphic (i.e. more than one allele) genes.  Because of this, in many
applications of population genetics, for instance forensic blood type matching, it is customary to
deal directly with the genes and their frequencies, rather than the genotypes.  The Hardy-Weinberg
theorem (discussed below, Theorem 12.2) allows one, under certain circumstances, to use the
information on genes to calculate the information on genotypes, which is usually the ultimate
objective.

If the phenotype of Aa  is the same as the phenotype AA  we say that the allele A  is dominant and
a  is recessive.  In the case of two alleles, we shall always denote the dominant one, if there is one,
by A .  If no dominance pattern is stated the three genotypes give three distinct phenotypes.

Example 12.5: If A  and B  are each dominant for different traits and the loci of A  and B  lie on
separate chromosomes (i.e. the loci are not on a homologous pair) how many phenotypes
correspond to the nine genotypes described in Example 12.3.

Solution:

There are two phenotypes associated with each gene, namely A , a  and B , b .  The multiplication
principle implies that there are 4 possible phenotypes.  This can also be obtained by examining
each of the nine genotypes and classifying them according to their phenotype.  For example,

//Aa bb  would give the phenotype Ab .!

12.3 Reproduction of the Organism

We assume the organism reproduces sexually.  If we know the genotypes of the parents, then
Mendel's theory allows us to calculate the probability, and therefore the expected relative
frequency for the genotype of the offspring.

Example 12.6: A male of genotype Aa  at a particular locus is crossed with a female with the
same genotype at that locus.  List all possible genotypes of the zygotes and the probability of each.

Solution:

The male produces gametes with genes A  and a  in equal number, similarly for the female.  A
random zygote is obtained by selecting a male gamete and a female gamete independently of each
other.  There are four possible selections, as a tree diagram reveals.

Male

Female A a A a

A a
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Using the independence of the choices we have the following probabilities: (the first letter denotes
the gene selected for the male gamete.)

1 1 1( )
2 2 4

P AA = × = , 1 1 1( )
2 2 4

P aA = × = , 1 1 1( )
2 2 4

P Aa = × = , and 1 1 1( )
2 2 4

P aa = × = .

The two middle outcomes give the same genotype for the zygote.  Therefore the probabilities for
the genotype frequencies for the zygotes are :1/ 4, : 1/ 2, : 1/ 4AA Aa aa !

Example 12.7: Suppose that with respect to two genes on non-homologous chromosomes the
parents are both of type //Aa Bb .  What is the probability of occurrence for each of the possible
genotypes for the zygotes? (This type of pairing is referred to in genetics as a dihybrid cross.)

Solution:

When the gametes are formed by meiosis, the chromosomes from each pair are sorted
independently i.e. the genotype created for one locus is independent of the genotype created at the
other locus (Mendel's principle of independent assortment).  Therefore, for each genotype of a
zygote, for example //Aa bb , its probability of occurrence is obtained by multiplying the
probability of obtaining each separate genotype, which was given in Example 12.6.  Thus

1 1 1( // )
2 4 8

P Aa BB = × = .  Going through the nine possible genotypes of a zygote gives

AA//BB 1/16 Aa//BB 1/8 aa//BB 1/16
AA//Bb 1/8 Aa//Bb 1/4 aa//Bb 1/8
AA//bb 1/16 Aa//bb 1/8 aa//bb 1/16

!

If the two loci of genes A  and B  are on the same chromosome, the analysis of the pairings of
males and female is more difficult.  Mendel's principle of independent assortment no longer
applies to the production of gametes.  Indeed, during the meiotic division leading to the creation of
the gametes, the phenomenon of crossover may lead to new combinations of genes in the gametes.
Specifically, if the genotype is heterozygous for each allele, for example /AB ab , then when
gametes are formed, the alleles B  and b  may be exchanged, yielding recombinant gametes Ab
and aB , in addition to the so-called parental gametes AB  and ab .  A similar result applies when
the parental genotype is /Ab aB .

In this situation the gametes are produced as if the genes were on separate chromosomes, except
that the four gametes types AB , Ab , aB , and ab  may not occur with equal frequency.  We
denote by r  the probability that a gamete is of recombinant type (also called the recombination
frequency) and by p  the probability that it is of parental type.  Mathematically, there are two
aspects of the crossover mechanism that are important.  First, when there is crossover the four
haploid cells produced by the adult contain one of each gamete type. (Note that meiosis produces
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four gametes, rather than two, because the chromosomes double before the meiotic division.)  This
implies that there is an equal chance of occurrence ( / 2r ) of each of the two recombinant types.
Moreover, when no crossover occurs only gametes of parental type are produced and in equal
numbers.  Thus each parental genotype has probability of occurrence equal to / 2p .  Since
crossover produces both parental types and recombinant types in equal numbers and non-crossover
produces only parental types, we must have p r≥ .  We can now deduce the following
fundamental result.

Theorem 12.1 (Recombination frequency):
In a doubly heterozygous adult the frequency r  of recombinant gametes and the frequency p  of
parental type gametes satisfy

a) 1p r+ =

b) 1
20 r≤ ≤ .

Moreover, each recombinant genotype occurs with probability / 2r  and each parental genotype
with probability / 2p .

Solution:

Since any gamete either is of recombinant or parental type a) follows from the definitions of r  and
p .  From the remarks preceding the theorem, we have that p r≥  and therefore 1 2p r r= + ≥

from which b) follows.  The last statement summarizes the discussion of the crossover mechanism
given above.!

Note that if 1/ 2r =  then also 1/ 2p =  and all four gametes are produced in equal proportions, as if
the genes A  and B  were on different chromosomes.  This tends to occur when the loci are far
apart on the chromosome.  When 0r =  or is very small, crossover is rare and the parental
genotypes predominate in the gamete pool.  In this case the gene loci are near each other.  The
recombination frequency r  is important because it provides a measure of the “distance” between
loci on the same chromosome.  This frequency can be often be estimated using testcrosses with
pure-breeding recessives, as described in exercise 10.

12.4 Reproduction of the Population

We have seen above how to predict and assign probabilities to the possible outcomes for the
mating of individuals.  Similar techniques can be used to describe the probable development for a
large ensemble of individuals, known as a population.  We focus first on a particular gene with two
alleles.  What can be said about the frequencies of the three genotypes in the population as a
whole?  The answer, known as the Hardy-Weinberg principle is surprisingly simple.  However, it
requires certain assumptions on the population and the mating of individuals.  These assumptions
are
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 (i) The population is large.  This enables us to think of relative frequencies as probabilities and
vice-versa.

 (ii) The mating is random.  The genotype in question has no effect on an individual's choice of
mate.  We can think of this figuratively as if the males were placed in one large urn, the
females in another and fate picks partners from each urn at random and independently.

 (iii) Males and females have the same distribution of the three genotypes at the given locus.  In
particular, the locus cannot be on the so-called X  chromosome, of which males only carry
one homologous copy.  The analysis of sex-linked traits is more complicated, although a
similar result to the Hardy-Weinberg principle is true.  See exercise 14 for the details.

 (iv) Each genotype has equal fitness.  This means that all zygotes have an equal chance of
surviving to reproductive age.

 (v) There are no mutations at the locus or migrations of individuals into the population.

Our analysis of the genotype frequencies for populations uses the mathematical artifice of the gene
pool.  We think of the genes from all males as being in one large collection and similarly the genes
of all females.  A mating can be viewed as simply picking a member from each of these pools to
create an offspring.  The schema in all these analyses can be represented as follows:

gametic Random Mating zygotic Mendel's Laws new gametic
gene pool frequency gene pool

Figure 12.1

The assumption of random mating (and the laws of probability discussed in the previous chapters)
enables us to derive the zygote frequency given some initial distribution of genes.  Mendelian
genetics then allows us to predict the frequency of the genotypes in the next generation.  We first
illustrate this procedure in its simplest case, the Hardy-Weinberg equilibrium theorem.

Suppose the allele A  has frequency p  and the allele a  has frequency q , where 1p q+ = .  It is
convenient to express this information (the first “bubble” in Figure 12.1) in tabular form, as this
helps with the analysis of more complicated examples.

Initial Gametic Frequency (Male & Female)
Gamete Type A a

Frequency p q

By (iii) these frequencies are the same in the male and female gene pools.  Interpreting the
frequencies as probabilities, (i), we can find the frequency of each of the three genotypes,

, ,AA aA aa .  For example, the genotype AA  arises from the selection of an A  allele from the
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male gene pool and an A  allele from the female gene pool.  As these are independent events, (ii),
the probability of obtaining an offspring of genotype AA  is the product of the two relative
frequencies 2p p p× = .  Similarly, the probability of obtaining the genotype aa  is 2q , while the
probability of obtaining the genotype aA  is 2 pq  since we can create this genotype by the
selection of an a  male and an A  female, or vice-versa.  This gives us a table for the second step in
Figure 12.1.

Zygote Frequency
Genotype AA Aa aa

Frequency 2p 2 pq 2q

To summarize: If we begin with a large population having gene frequencies for the two alleles of
p  for A  and q  for a , then the zygotes will be created in the proportions 2:AA p , :2aA pq ,

2:aa q .  These three ratios have a remarkable property.  The adults in this generation will produce
gametes with A  and a  in the exactly the same proportions as the parental generation.  Let's see
why this is so.

The zygotes described in the preceding paragraph mature and according to (iv) and (v) the
genotypes of the adults will have the same proportions.  What will be the gene pool frequencies,
denoted by p′  and q′ , for these new adults? (This is the third “bubble” in Figure 12.1.)  We can
compute these frequencies using the rules of probability developed in Chapters 10 and 11.

The selection of a gene from the new pool can be visualized as a two-stage process.  First we select
an adult and then we select one of that adult's genes.  For example, the event that an A  gene is
selected from the pool is achieved in one of two mutually exclusive ways.  Either we first select an
adult of genotype AA  and then select an A  gene from its gametes or we select an adult of type
Aa  and then select its A  gene. (Selecting an adult of type aa  is obviously of no value here.)
Using a slightly ambiguous but simple notation, this decomposition yields the probability formula

( ) (  and ) (  and )p P A P AA A P Aa A′ = = + .

The joint probabilities on the right may be evaluated using conditional probabilities.  We have

(  and ) ( | ) ( ) ( )P AA A P A AA P AA P AA= =

and

1
2(  and ) ( | ) ( ) ( )P Aa A P A Aa P Aa P Aa= = .

This yields the following useful formula expressing the gene frequency of A  in terms of the

relevant genotype frequencies:

1
2( ) ( ) ( )P A P AA P Aa= + (12.1)
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Using for ( )P AA  and ( )P Aa  the zygote frequencies listed above, formula (12.1) yields that

2( ) ( )p P A p pq p p q p′ = = + = + =

since 1p q+ = .  Similarly the reader should show that ( )q P a q′ = = .  Thus the table for the new
gametic frequencies is identical to the original distribution.

New Gametic Frequency (Male & Female)
Gamete Type A a

Frequency p p′ = q q′ =

What do these results mean?  No matter the gene frequencies we started with, (the p  and q ), if
selection is not operative and mating is random, then after one generation the gene frequencies will
be precisely the same as in the initial state.  Since in random mating the gene frequencies
determine the genotype frequencies for the offspring, we obtain the Theorem of Hardy &
Weinberg:

Theorem 12.2 (Hardy-Weinberg Equilibrium): If assumptions (i) to (v) above are true, then
after one generation the genotype frequencies will have the ratios 2:AA p , :2aA pq , 2:aa q .
These ratios will persist as long as assumptions (i) to (v) remain in effect.!

A population is said to be in Hardy-Weinberg equilibrium if the genotype ratios have the values
given in the theorem.  These ratios give a baseline measure for determining whether the five
conditions above are operative.  Deviations from the Hardy-Weinberg ratios indicate that at least
one of the five assumptions is not true.  Typically, the mating may not be random or a selection
pressure may be in effect that decreases the fecundity of one genotype compared with the others.

Example 12.8: The MN  blood grouping is a blood classification based on a single gene with two
alleles, M  and N .  Each of the three genotypes MM , MN , and NN  produces a distinct
phenotype, which are usually designated M , MN  and N , respectively.  In a sample of 6129
European-Americans the observed numbers with these phenotypes (and hence the corresponding
genotypes) were found to be:

Genotype MM MN NN
Frequency 1787 3039 1303

Based on this data, is the population in Hardy-Weinberg equilibrium? (Data from Evolution, 2nd

Edition by Mark Ridley, Blackwell Science Publ.)

Solution:

We must compute the gene frequencies Mp p= and Nq q=  based on this sample.
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•  First find the frequencies of the three genotypes.  These are 1787: .292
6129

MM ≈ ,

3039: .496
6129

MN ≈ , and 1303: .213
6129

NN ≈ .

•  Next we must compute the gene frequencies using these genotype frequencies.  To do this use

equation (12.1) above.  We find that the frequency of M  is 1.292 .496 .54
2

p = + × =  and the

frequency of N  is 1.213 .496 .46
2

q = + × = .  Note that 1p q+ = , as required for the two gene

frequencies.

•  We now compute the Hardy-Weinberg ratios using the gene frequencies just found.  The
predicted genotype frequencies are MM: 2 2(.54) .292p = = , MN: 2 2 .54 .46 .497pq = × × = ,
and NN: 2 2(.46) .212q = = .  These are very close to the observed frequencies, indicating that
the population is in H-W equilibrium at this locus.  More ambiguous cases can be evaluated
using a statistical technique known as the chi-squared test.!

The Hardy-Weinberg theorem extends easily to genes that have more than two alleles. (See for
example exercise 12.)  When an equilibrium exists it is permissible to compute genotype
frequencies in the population by multiplying the respective gene frequencies.  This is quite useful
for example, in forensic DNA identification where highly polymorphic genes are often examined
and it would be extremely time-consuming and expensive to obtain statistical data on the large
number of possible genotypes.  Of course the genes that are used must satisfy the hypotheses (i) to
(v) listed earlier.  In particular, the migration issue (v) requires a definition of the relevant breeding
population and this has led to some controversies when applied to a society such as the U.S. with
large subpopulations.

One might expect that a result similar to the Hardy-Weinberg theorem would hold for genotype
frequencies at multiple loci.  For example, if the genes A  and B , each with two alleles, were
located on different homologous pairs one might hope that any initial distribution of the four
possible gametes , , ,AB Ab aB ab  would lead to a stable genotype distribution.  This is indeed the
case, but it takes more than one generation to establish.  For example, suppose we began with only
two gamete types :AB  frequency 0.5 and :ab  frequency 0.5 in each of the male and female
gamete pools.  The formation of a zygote involves the selection of a gamete from the male gene
pool and one from the female.  The zygote //Aa Bb  can occur either by selecting an AB  gamete
from the male pool and an ab  gamete from the female pool or vice-versa.  Therefore, assuming
these choices are made independently, the zygote genotype //Aa Bb  will occur with frequency
2 .5 .5 .5× × = .  The gametes produced by this zygote contain type Ab , which did not exist in the
original gene pool.  In fact, the frequency of this gamete, as well as the type aB , keeps increasing
towards .25, while the frequencies of the two original types decrease towards the same limiting
ratio.
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We can set up a spreadsheet model to examine this phenomenon.  The reader who wishes to delve
into an algebraic analysis of this model, as well as examine the case when the genes are on the
same homologous pair (which can lead to the phenomenon of linkage disequilibrium) can consult
exercises 16 and 17.

Example 12.9: Follow the three-step procedure outlined in the Hardy-Weinberg theorem to derive
formulas for the new gene frequencies for a pair of genes at unlinked loci after one generation of
random mating.

Solution:

We begin with a table giving the initial distribution of genotypes at the two loci:

Initial Gametic Frequency
Gamete Type AA ab aB Ab

Frequency p q s t

We can now construct a table giving the frequencies of the nine possible zygotic genotypes (see
Example 12.3).  To do this we need to list for each zygote all possible parental genotype crosses
that yield the given zygote genotype.  When the parental types are distinct from each other there
will be two possibilities for obtaining the cross by switching which type comes from the male and
which from the female.  This is indicated in the table below by writing 2×  next to the appropriate
cross.

Zygote Type Parental Cross Zygote Type Parental Cross Zygote Type Parental Cross
//AA BB AB AB× //Aa BB 2AB aB× × //aa BB aB aB×

//AA Bb 2AB Ab× × //Aa Bb
2
2

AB ab
Ab aB

× ×
× ×

//aa Bb 2aB ab× ×

//AA bb Ab Ab× //Aa bb 2Ab ab× × //aa bb ab ab×

We can now express the zygotic genotypes in terms of the original gene frequencies.  Using the
previous table and the rules of probability we obtain the following table, which completes the 2nd

stage of our analysis.

Zygote Type Frequency Zygote Type Frequency Zygote Type Frequency

//AA BB 2p //Aa BB 2 ps //aa BB 2s

//AA Bb 2 pt //Aa Bb 2( )pq st+ //aa Bb 2qs

//AA bb 2t //Aa bb 2qt //aa bb 2q

Table 12.1
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(As a partial check of the analysis up to this point the reader might want to verify that the nine
entries in the table have a sum of one.  See exercise 15.)  To complete the analysis we must find
the new gamete frequencies from the distribution of zygotes.  The table below lists the four
gametes together with the zygotic types that can produce each one.  The multiplicative factor
following each entry indicates the fraction of the gametes produced by that zygote that would be of
the stated type.  This fraction is obtained using Mendel's law of independent assortment for each
individual zygote.

Gamete Type AB ab aB Ab

From Zygote
Types

1
2
1
2
1
4

// 1
//
//
//

AA BB
AA Bb
Aa BB
Aa Bb

×
×
×
×

1
2
1
2
1
4

// 1
//
//
//

aa bb
aa Bb
Aa bb
Aa Bb

×
×
×
×

1
2

1
2
1
4

// 1
//
//
//

aa BB
aa Bb
Aa BB
Aa Bb

×
×
×
×

1
2

1
2
1
4

// 1
//
//
//

AA bb
AA Bb
Aa bb
Aa Bb

×
×
×
×

Using the zygote frequencies in Table 12.1, we can finally obtain the desired results for the new
gene frequencies, which we denote by , ,p q s′ ′ ′  and t′ .  For example, the new frequency p′ of AB
is obtained by adding frequencies for the zygotes listed above under the column AB , each
multiplied by the respective fraction.  Thus

2 1 1
2 2p p pt ps pq st′ = + + + + (12.2)

The last equation can be put into a simpler form by using the fact that the four original frequencies
satisfy 1p q s t+ + + =  or 1p t s q+ + = − .  We can make use of this relationship in (12.2) by
factoring p  from the first three terms on the right side, obtaining

1 1
2 2

1 1
2 2

1 1
2 2

1
2

( )
(1 )

( ).

p p p t s pq st
p q pq st
p pq pq st
p st pq

′ = + + + +
= − + +
= − + +
= + −

In a similar manner we obtain the other formulas listed in the table below.

Gamete
Type AB ab aB Ab

Frequency 1
2 ( )p p st pq′ = + − 1

2 ( )q q st pq′ = + − 1
2 ( )s s st pq′ = − − 1

2 ( )t t st pq′ = − −

Table 12.2

It is now a relatively trivial matter to setup a spreadsheet incorporating the above formulas.  The
next figure illustrates the appropriate entries. Row 1 contains text identifiers for the four
genotypes.  In row 2 you would type four specific numbers, not the generic letters shown.  Of
course these numbers must satisfy the condition that 1p q s t+ + + = .  The formulas in row 3
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encompass the results shown in Table 12.2.  To study the genotype distribution through several
generations, we have only to copy the formulas in row 3 into further rows below.

A B C D
1 AB ab aB Ab
2 p q s t
3 =A2+.5*(C2*D2-A2*B2) =B2+.5*(C2*D2-A2*B2) =C2-.5*(C2*D2-A2*B2) =D2-.5*(C2*D2-A2*B2)

Let's apply this model to the situation mentioned earlier where .5p = , .5q =  and s  and t  are both
initially zero.  The table below gives the output of the model.  As we indicated, all the gene
frequencies approach a stable value, in this case .25.  This limiting value can in fact be predicted
from the gene frequencies at each locus given by the Hardy-Weinberg Theorem.  See exercise 16
for details.

generation AB ab aB Ab
1 0.500 0.500 0.000 0.000
2 0.375 0.375 0.125 0.125
3 0.313 0.313 0.188 0.188
4 0.281 0.281 0.219 0.219
5 0.266 0.266 0.234 0.234
6 0.258 0.258 0.242 0.242
7 0.254 0.254 0.246 0.246

!

12.5 Summary

Because genetic recombination involves seemingly random selection, the tools of probability
theory can be used to predict ensemble effects.  Thus, while we cannot predict the outcome of an
individual cross of two heterozygotes, we can accurately predict the probabilities for any particular
outcome.  In turn, these probabilities represent the relative frequencies with which individual
outcomes will occur in a large number of repetitions of the reproductive process.

At the level of the individual, our analysis has focused on the zygotic distribution of genotypes at
one or two loci.  When the loci are on different chromosomes the analysis rests on Mendel’s
principle of independent assortment, according to which the selection of genes on different
chromosomes constitute independent events. Additional mixing of genes occurs even on the same
chromosome, due to the important phenomenon of recombination

Once we have worked out the probability distribution for zygotic genotypes, we can apply the
results to determine the long-term distribution of genotypes in an entire population, provided we
know the initial distribution.  With respect to one locus, not subject to selection or assortive
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mating, The Hardy-Weinberg theorem describes the distribution of genotypes.  Similar, albeit
more complicated patterns hold when we consider the interaction of two loci, whether on
homologous or different chromosome pairs.

12.6 Exercises

1. The ABO blood type is a phenotype that is due to a gene with three alleles at a single locus.
These are usually designated , ,A BI I i  where the allele AI  codes for the presence of antigen A ,

BI  codes for the presence of B  and i  provides no antigen.  Each of the coding alleles is
expressed regardless of any other allele with which it is paired.  Based on your knowledge of
blood types, determine which of the six genotypes correspond to each of the phenotype blood
groups A, B, AB and O.

2. a) A father has type A blood and a mother type B.  If one of their offspring has type O blood,
what are the genotypes of the parents? (See exercise 1 regarding the genotype classification
for the A, B, AB, O phenotypes.)

b) A father with type A blood and a mother with type B have 4 children.  The first three are of
type AB and the last is of type A.

i) What is the genotype of the mother?

ii) What are the two possible genotypes for the father?  For each genotype, find the
probability of the specified pattern of blood types in the offspring. (Computations of
this sort are used in the maximum likelihood method of statistical inference.)

3. a) How many genotypes are possible if there are 4 alleles at a locus?

b) Give an argument to show that if there are n  alleles then there are ( 1)
2

n nn −+  genotypes.

4. Repeat the analyses of Example 12.3 and Example 12.4 if the two loci have three alleles at
each locus.

5. Two genes each with two alleles, one of which is dominant, are on the same chromosome.  If
the two genes code for different traits, how many phenotypes are possible?

6. Suppose in Example 12.6 that A  is dominant.  Using the mating in that example, what are the
probabilities that the zygote has each of the phenotypes A  and a ?

7. Five offspring are produced from male and female parents as described in Example 12.6.
What is the probability that at least one of the five will be a heterozygote?  What probabilistic
assumption are you using in your calculation? (Remark: In Chapter 13 we will learn a
technique (the binomial distribution) that enables you to find the probability for the occurrence
of any number of offspring of a particular genotype.)
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8. Assume in the situation described in Example 12.7 that A  and B  are each dominant.
According to Example 12.5 there are four possible phenotypes.  Find the probability of each
phenotype for the mating in Example 12.7.

9. Assume as in Example 12.7 that the gene loci are on different chromosome pairs.  Suppose the
parents are of genotypes, male //Aa BB  and female //aa Bb .  Find the probability for the
genotype of all possible zygotes from such a pairing.

10. Suppose A  and B  are each dominant at their respective loci and each gene codes for some
readily observable physical trait.  The genotype of an individual cannot be inferred uniquely
from the trait because AA  and Aa  individuals will exhibit the same character, namely
phenotype A .  If a male has phenotype AB  what breeding experiment could you do to
determine if the male was homozygous or heterozygous for each gene.  In particular, what
outcomes would distinguish the four possible genotypes for the male?  Assume that you have
access to females who are homozygous with respect to the recessive gene, i.e. of type //aa bb .

11. A certain species of plant has two genes A  and B  with two alleles ( ,A a ) and ( ,B b ) of which
the A  (respectively B ) form is dominant.  The genes may or may not be on the same
homologous chromosome pair.  We assume that the plant species is capable of self-fertilization
from male and female organs.  We start with a plant whose self-fertilized progeny all have
phenotype AB  and another plant whose self-fertilized progeny all have phenotype ab .  These
so-called pure breeding dominant and recessive types are crossed with each other.  The
offspring of the cross are known as the 1F  or first filial generation.

Plants from the 1F  generation are then crossed with a pure breeding plant of phenotype ab .  A
particular experiment produced the following distribution of phenotypes.

Phenotype AB Ab aB ab
Frequency 140 75 65 120

a) Explain why each of the original pure breeding parents must be homozygous at each locus
and why the 1F  generation consists entirely of double heterozygotes.

b) Show that the cross of the 1F  plants with the pure breeding recessive heterozygote
produces zygotes with only four distinct genotypes, regardless of whether the genes A  and
B  are on the same chromosome pair or different pairs.  In each case one genotype
corresponds exactly to one phenotype.

c) Why is the phenotype data above inconsistent with the hypothesis that the genes A  and B
are on different chromosome pairs?

d) Which phenotype combinations correspond to crossovers?  Estimate the recombination
frequency from the given data.

12. Sickle-cell trait is a defect in the shape of the hemoglobin molecule, which leads to an often
fatal anemia.  It is caused by a recessive allele S  of a polymorphic gene.  The other alleles
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code for a normal hemoglobin shape, are all dominant over the allele S  and for the purpose of
this analysis can be thought of as a single alternative which we denote by A .  A study of
12,387 adults from the Yoruba people of Nigeria yielded the following data on the three
genotypes , ,SS SA and AA .  (Source: Evolution, 2nd ed., by M. Ridley)

Genotype SS SA AA
Frequency 29 2993 9365

Show that the population is not in Hardy-Weinberg equilibrium with respect to this locus.  It is
known in this instance that the heterozygote has a survival advantage over either homozygote.
The genotype frequencies will approach an equilibrium value, but not the one predicted by the
Hardy-Weinberg theorem.

13. Suppose that there are three alleles 1 2 3, ,A A A  at the locus and that conditions (i) to (v) listed for
the Hardy-Weinberg theorem (Theorem 12.2) are in effect.  Denote the frequencies of these
genes in the gene pool by , ,p q  and r , respectively.

a) Compute the frequencies of the six genotypes. (See Example 12.2)

b) Using the six genotype frequencies found in a) find the three gene frequencies in the next
adult generation.

c) What are the stable genotype frequencies (Hardy-Weinberg ratios) for the case of three
alleles?

14. A single homologous pair of chromosomes determines the sex of a human zygote.  Males carry
a single X chromosome paired with a slightly shorter Y chromosome.  Females carry a pair of
X chromosomes.  A gene that appears on the X chromosome, but not on the shorter Y is said to
be sex-linked.  Males carry only a single allele of such a gene.  In this exercise we show how
the population gene frequencies of a sex-linked gene change with random mating and explore a
numerical simulation of this process.  We will consider the mathematics further in chapter 17.

a) We begin with the first stage of the analytical scheme in Figure 12.1, leaving some details
to the reader.  Suppose a gene with two alleles A  and a  is sex-linked.  We need to
consider two separate gene pools, one for the males and one for the females.

Initial Male Gene Pool Initial Female Gene Pool
Gamete A a A a

Frequency p q s t

Why is 1
2p q+ =  but 1s t+ = ?

b) The next step is to deduce the zygote frequency table for male zygotes and female zygotes.
Derive the entries shown in the following table.
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Male Zygotes Female Zygotes
genotype AY aY AA Aa aa
frequency s t 2 ps 2( )pt qs+ 2qt

Hint: Each of the stated frequencies must be computed as a conditional probability.  Thus
the frequency (probability) entry for male zygotes of type AY  refers to the fraction of
males that are of this type. In probability terms this is ( |  male)P AY .

c) Using a) verify that the zygote frequencies for each sex listed above have a sum of one.

d) We now derive the new gametic frequencies.  Explain why these are given by the following
table:

New Male Gene Pool New Female Gene Pool
Gamete A a A a

Frequency 1
2p s′ = 1

2q t′ = 1
2s p s′ = + 1

2t q t′ = +

e) The file hw_sex.xls provides a framework for examining the frequency changes of a sex-
linked gene.  Follow the steps given in that spreadsheet and answer the questions regarding
the limiting values of the gene frequencies.

15. Verify the assertion made earlier that the sum of the nine frequency entries in Table 12.1 is
one.

16. a) Set up the spreadsheet model for the changes in gene frequencies on non-homologous
chromosomes as described in Example 12.9.  Determine the limiting gene frequencies in
each of the following cases:

i) 0, 0.1, 0.1, 0.8p q s t= = = =

ii) 0.1, 0, 0.1, 0.8p q s t= = = =

iii) 0.1, 0.1, 0, 0.8p q s t= = = =

b) Explain why the gene frequencies of A, a, B, and b are given respectively by Ap p t= + ,

ap q s= + , Bp p s= + , and bp q t= + .  By the Hardy-Weinberg Theorem (Theorem 12.2)
these frequencies should remain fixed from one generation to the next.  Verify this using
the formulas in Table 12.2.

c) For the numerical examples in a) verify that the limiting value of p  is A Bp p , the limiting
value of q  is a bp p , the limiting value of s  is a Bp p , and the limiting value of t  is A bp p .
In other words, after several generations the population gene frequencies at two loci can be
found by multiplying the frequencies at each locus.  This is a fundamental principle used in
computing frequencies of DNA matches in forensic DNA analysis.
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d) Using that Bs p p= −  and At p p= −  (see b)), show that A Bst pq p p p− = − .  From Table
12.2 conclude that 1

2 ( )A B A Bp p p p p p′ − = −  and that after the next generation
1
4 ( )A B A Bp p p p p p′′ − = − .  By continuing this argument, explain why the frequency of the

AB  gamete will approach A Bp p .  Derive similar results for the other gamete frequencies.

17. The analysis of population gene frequencies for genes on the same chromosome pair is similar
to the analysis given in Example 12.9 and exercise 16.  Assume that A , a , B , and b  are on
the same homologous pair, with a recombination frequency r  (see Theorem 12.1).  We let p ,
q , s , and t  denote the frequencies of the gametes AB , ab , aB , and Ab , respectively.

a) Construct a table similar to Table 12.1 showing the frequency of all (ten) possible zygotes.

b) Using the table found in a) construct a table similar to Table 12.2 for the new gametic
frequencies.  Your formulas should be identical to those in Table 12.2, except that the
factor 1

2  will be replaced by the recombination frequency, r .

c) Set up a spreadsheet model for the changes in gene frequency as described in b).  Use
absolute referencing to refer to the value of r.  Explore the situation where the initial gene
frequencies are 0.5p q= = , 0s t= = and where r takes on the values .01, .05 , .1, .25  and
.5 .  Verify that for each value of r the limiting gene frequencies are the same (and equal to
the product of the frequencies at each locus) but that the number of generations required to
“reach” the limit increases as the recombination frequency gets smaller.  The long time
required to reach “equilibrium” when the loci are very close leads to what biologists refer
to as linkage disequilibrium.
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