Sample Final Exam
Math 346 - Prof. Santoro

Instructions: All questions are worth the same number of points. Important: No books, calculators, or notes are allowed. Turn off cell phones, alarms, and anything else that makes noises!

Answer 8 out of the 10 questions from this exam. Please indicate very clearly which questions you are choosing not to answer.

You must show all your work to receive credit. Any crossed out work will be disregarded (even if correct).
You have 135 minutes to complete this exam. Good luck!
[1] Solve the system

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
5 \\
9 \\
14
\end{array}\right]
$$

[2]
Consider the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 4 & k\end{array}\right]$. For which values of k will the system $A x=\left[\begin{array}{l}2 \\ 3 \\ 7\end{array}\right]$ have:
(a) A unique solution?
(b) An infinite number of solutions?
(c) For the value of k you picked for item b), find a particular solution to the system above.
(d) Still for the value of k you picked for item b), find the complete solution to the system above.
[3] Find bases for the four fundamental subspaces of A :

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

[4]
(a) Find the orthogonal projection of the vector $b=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$ on the subspace spanned by the vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
(b) If P is the plane spanned by the vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ in \mathbb{R}^{3}, find a basis for the orthogonal complement P^{\perp}.
[5] Let A be the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 3 \\
1 & 1 & 4 & 8 \\
1 & 1 & 1 & 5
\end{array}\right]
$$

Compute the determinant of the matrix $B=A^{4}\left(A^{T}\right)^{3} A^{-5}$, justifying all of your steps.
[6]
(a) Find the eigenvalues and eigenvectors for the matrix

$$
A=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right]
$$

(b) Find $\lim _{k \rightarrow \infty} A^{k}$, justifying your answer.
[7] Find the line that best fits the points $(x, y)=(0,2),(1,3),(2,6)$.
[8] Solve the linear system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=2 x+y \\
y^{\prime}=x+2 y \\
x(0)=0 \\
y(0)=1
\end{array}\right.
$$

[9] Suppose a 4×4 matrix A has eigenvalues $0,0,1$ and 2 . What is the determinant of the matrix $B=\left(A^{2}+I\right)^{-1}$? Justify your answer.
[10] Find the Singular Value Decomposition of the matrix

$$
A=\left[\begin{array}{cc}
0 & -1 \\
4 & 0
\end{array}\right]
$$

