Additional Problems Math 346 - Prof. Santoro

Instructions: This document contains sample problems, to be used in preparation for your final exam. Allow yourself at most 15 minutes per question when attempting to solve the problems.
[1] Solve the system

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 6 \\
2 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
26 \\
34
\end{array}\right] .
$$

[2]
(a) Write down the definition of a subspace of a vector space.
(b) Prove that the set S of all vectors $\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} such that $x_{1}+x_{2}=0$ is a subspace of \mathbb{R}^{3}.
[3] Find bases for the four fundamental subspaces of A :

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

[4]
(a) Find the orthogonal projection of the vector $b=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$ on the subspace spanned by the vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
(b) If P is the plane spanned by the vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ in \mathbb{R}^{3}, find a basis for the orthogonal complement P^{\perp}.
[5] Let A be the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 3 \\
1 & 1 & 4 & 8 \\
1 & 1 & 1 & 5
\end{array}\right]
$$

Compute the determinant of the matrix $B=A^{4}\left(A^{T}\right)^{3} A^{-5}$, justifying all of your steps. [6]
(a) Find the eigenvalues and eigenvectors for the matrix

$$
A=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right]
$$

(b) Find $\lim _{k \rightarrow \infty} A^{k}$, justifying your answer.

Let \mathcal{P}^{3} (resp. \mathcal{P}^{4}) be the vector space of polynomials of degree less than or equal to 3 (resp. 4).
Let $T: \mathcal{P}^{3} \rightarrow \mathcal{P}^{4}$ be the linear transformation that assigns to each polynomial $p(x)$ in \mathcal{P}^{3} its only antiderivative which vanishes at $x=0$:

$$
T(p)=\int_{0}^{x} p(t) d t
$$

For example, if $p(x)=1+2 x+3 x^{2}$, then $T(p(x))=x+x^{2}+x^{3}$.
(a) Write down a basis for \mathcal{P}^{3}.
(b) Write down a basis for \mathcal{P}^{4}.
(c) For your choice of basis, find the matrix M_{T} that represents the linear transformation T.
[8] Suppose A is a 3×3 matrix with eigenvalues 1,2 and 3 , and associated eigenvectors v_{1}, v_{2}, v_{3}.

Define the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T(v)=A v .
$$

(a) Prove that T is a linear transformation.
(b) Choose v_{1}, v_{2}, v_{3} to be a basis for \mathbb{R}^{3} (the input and output space for T). For this choice of basis, what is the matrix that represents the linear transformation T ?
[9] Suppose a 4×4 matrix A has eigenvectors $0,0,1$ and 2 , associated to the eigenvectors z, u, v and w, respectively. Assume that z and u are linearly independent.
(a) (5 pts) Find a basis for the nullspace of A, and a basis for the column space of A.
(b) (5 pts) Find the complete solution to the system $A x=v+w$.
[10] Solve the linear system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=3 x-y \\
y^{\prime}=-x+3 y \\
x(0)=1 \\
y(0)=0
\end{array}\right.
$$

[11] Suppose a 4×4 matrix A has eigenvalues $0,0,1$ and 2 . What is the determinant of the matrix $B=\left(A^{2}+I\right)^{-1}$? Justify your answer.
[12] Let a_{1}, a_{2}, a_{3} be linearly independent vectors in \mathbb{R}^{3}, and let q_{1}, q_{2}, q_{3} be the vectors obtained from a_{1}, a_{2}, a_{3} by the Gram-Schmidt algorithm.
Define the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T\left(q_{1}\right)=a_{1}, T\left(q_{2}\right)=a_{2}$ and $T\left(q_{3}\right)=a_{3}$. For the choice of basis $\left\{q_{1}, q_{2}, q_{3}\right\}$ both for the input and output spaces, find the matrix M_{T} which represents the linear transformation T for this choice of basis.
[13] Let A be a matrix with orthogonal columns w_{1}, \cdots, w_{n}, of lengths $\sigma_{1}, \cdots, \sigma_{n}$. What are U, Σ and V in the singular value decomposition of A ?
[14] If A is the matrix

$$
A=\left[\begin{array}{cccc}
a & b & c & d+1 \\
a & b & c+1 & d \\
a & b+1 & c & d \\
a+1 & b & c & d
\end{array}\right]
$$

find the determinant of $B=3 A^{5} A^{t} A^{-1}$. Please justify your answer.
[15]
(a) Write down the definition of an eigenvector v associated to an eigenvalue λ of a matrix A.
(b) Find the eigenvalues and eigenvectors for the matrix $A=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$
[16]
(a) Define linear independence for a set of vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$.
(b) Give an example of three linearly independent vectors in \mathbb{R}^{4}, and prove that they are indeed linearly independent.
(c) Give an example of three linearly dependent vectors in \mathbb{R}^{5}, and prove that they are indeed linearly dependent.
[17]
(a) Find the inverse of the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]
$$

(b) Use your answer above to solve the system $A x=b$, where $b=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{t}$.
(a) Let A be the matrix

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Give sufficient conditions on those constants in order to guarantee that the matrix A is invertible.
(b) Assuming the conditions on a), solve the system

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
2 a \\
a+b \\
a+b \\
a+b
\end{array}\right] .
$$

[19]
(a) Write down the definition of a subspace S of a vector space V.
(b) Recall that a diagonal matrix $A=\left(a_{i j}\right)$ is a square matrix such that the entry $a_{i j}$ is zero whenever $i \neq j$.
Show that the set D of all 3×3 diagonal matrices is a subspace of $\mathcal{M}_{3 \times 3}$.
(c) Let S be the set of 3×3 matrices A such that the sum of the entries of A is exactly 1. Is S a subspace of $\mathcal{M}_{3 \times 3}$? Justify your answer.
[20]
(a) Give an example of a 4×4 matrix A such that the system $A x=b$ is solvable if $b=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]$ or $b=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$, but it is not solvable if $b=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$.
Please justify your answer.
(b) Is it possible to construct a 3×3 matrix B such that the system $A x=b$ is solvable if $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ or $b=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, but it is not solvable if $b=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$?
Please justify your answer.

[21]

Let A be a matrix. Show that $A^{t} A$ is invertible if and only if A has linearly independent columns.

Hint: Show that the nullspaces of $A^{t} A$ and A must be the same.

[22]

Suppose you are given four nonzero vectors r, n, c, ℓ.
(a) What are the conditions for those vectors to be bases for the four fundamental subspaces $R(A), N(A), C(A)$ and $N\left(A^{t}\right)$ of a 2×2 matrix A, respectively? You must justify your work.
(b) What is one possible matrix A ? The matrix A may depend on r, n, c, ℓ. You must justify your work.
[23]
Let A be a 4×5 matrix such that the vector $s_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$ is the only special solution.
(a) What is the rank of the matrix A ? Justify your answer.
(b) Is it possible to solve $A x=b$ for any $b \in \mathbb{R}^{4}$? Justify your answer.
(c) Find the complete solution to the system $A x=b$, where $b=($ column 1 of $A)+$ (column 3 of $A)+($ column 5 of A). You must justify your work.
[24]
Let S be the subspace of $\mathcal{M}_{3 \times 3}$ defined by

$$
S=\left\{A \in \mathcal{M}_{3 \times 3} ; A^{t}=-A\right\} .
$$

(a) Find a basis for S.
(b) Show that the basis you found is indeed a basis for S.
[25]
Let A be a 3×3 matrix such that there exist three nonzero vectors v_{1}, v_{2} and v_{3} which satisfy

$$
A v_{1}=3 v_{1}, \quad A v_{2}=4 v_{2} \text { and } A v_{3}=5 v_{3} .
$$

(a) Find the determinant of the matrix $B=(A-2 I)^{-1} A^{t}(3 A)^{2}$.

Note: No credit will be given if you use a particular matrix A to find your answer.
(b) Find bases for the nullspace and the column space of the matrix $C=A-4 I$. Justify your answer.

Let A be the following 3×3 matrix:

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

It is known that $\operatorname{det}(A)=5$.
Find the determinant of the matrix B, given by

$$
B=\left[\begin{array}{ccc}
g+a & h+b & i+c \\
3 a & 3 b & 3 c \\
a+d+g & b+e+h & c+f+i
\end{array}\right] .
$$

You need to justify your answer.
[27]
Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$.
(a) Find the four eigenvalues of A. Hint: what is the rank of A ?
(b) Let $B=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. Find the eigenvalues of B, and justify your answer.

[28]

Let $r(t)$ denote the rabbit population at time t, and let $w(t)$ denote the wolf population at time t. Those functions satisfy the following differential equation:

$$
\left\{\begin{array}{l}
r^{\prime}(t)=6 r-2 w \\
w^{\prime}(t)=2 r+w
\end{array}\right.
$$

Given that $r(0)=w(0)=30$, find the populations $r(t)$ and $w(t)$ after time t.
[29] Find four vectors u_{1}, u_{2}, v_{1} and v_{2}, and two real numbers σ_{1} and σ_{2}, such that the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
3 & 2 & 2
\end{array}\right]
$$

can be written as

$$
A=\sigma_{1} u_{1} v_{1}^{t}+\sigma_{2} u_{2} v_{2}^{t}
$$

The following problems are a courtesy of Prof. Merenkov.

[M1] Find the set of all solutions to the following system. If there are no solutions, state so and justify.

$$
\left\{\begin{array}{l}
2 x_{2}-x_{3}-x_{4}=1, \\
x_{1}+x_{2}-x_{3}+x_{4}=0, \\
3 x_{1}+3 x_{2}-2 x_{3}-x_{4}=-2 .
\end{array}\right.
$$

[M2] Let

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
1 & 1 & 2 \\
2 & -2 & 3
\end{array}\right]
$$

(a) Find A^{-1}.
(b) Use the inverse matrix above to solve the system

$$
\left\{\begin{array}{l}
-2 x_{1}+2 x_{2}-x_{3}=2 \\
x_{1}+x_{2}+2 x_{3}=-1 \\
2 x_{1}-2 x_{2}+3 x_{3}=5
\end{array}\right.
$$

(c) Write the following matrix A as a product of elementary matrices.

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 0 \\
0 & 3 & 5
\end{array}\right]
$$

[M3] Let $\vec{v}_{1}=(3,-1,2), \vec{v}_{2}=(-1,0,-3), \vec{v}_{3}=(3,-2,-5)$ be vectors in \mathbb{R}^{3}.
(a) Find the span of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(b) Does the system

$$
\left\{\begin{array}{l}
3 x_{1}-1 x_{2}+3 x_{3}=3 \\
-1 x_{1}-2 x_{3}=-1 \\
2 x_{1}-3 x_{2}-5 x_{3}=5
\end{array}\right.
$$

have a solution? Justify your claim.
[M4] Let $V=M_{2 \times 2}$ be the vector space of all 2×2 matrices and let W consist of all 2×2 matrices

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

such that $a_{21}=-2 \cdot a_{12}+1$. Is W a vector subspace of V ? Answer 'yes' or 'no' and justify your claim.
[M5] Let p_{1}, p_{2}, p_{3} be polynomials defined by

$$
p_{1}(x)=x^{2}+x+1, \quad p_{2}(x)=2 x^{2}+1, \quad p_{3}(x)=2 x .
$$

(a) Verify that p_{1}, p_{2}, p_{3} are linearly independent in the space P_{2} of all polynomials of degree at most 2.
(b) Express the polynomial $p(x)=x^{2}-x+1$ as a linear combination of p_{1}, p_{2}, p_{3}.
[M6] Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 1 & -1 \\
2 & 3 & 1 & -3 \\
-3 & -3 & 0 & 6
\end{array}\right]
$$

(a) Which columns of A form a basis for the column space $C(A)$ of the matrix A ?
(b) Express the non-basis columns of A as linear combinations of the columns of A from the basis for $C(A)$.
[M7] Find a basis for the orthogonal complement W^{\perp} of $W=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, where

$$
\vec{v}_{1}=(-1,2,3,0), \quad \vec{v}_{2}=(2,0,-1,1) .
$$

What is the dimension of W^{\perp} ?
[M8] Use the Least Squares Approximation to find a line $y=\alpha+\beta t$ that best fits the data $(-1,1),(0,2),(1,1),(2,0)$. Here, the first component is the t-value and the second is the y-value.
[M9] Use the Gram-Schmidt process to find an orthonormal basis for

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

The following problems are a courtesy of Prof. Steinberg.

[S1] Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$ and use it to solve the system

$$
\begin{array}{r}
x+2 y=1 \\
3 x+5 y=2
\end{array}
$$

[S2] Find the complete solution to the linear system $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 4 \\
1 & 1 & 2 & 5 \\
2 & 2 & 3 & 9
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]
$$

[S3] Let

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 1 \\
4 & 7 & 5
\end{array}\right]
$$

Find a basis for the column space of A consisting of columns from A and determine the rank of A.
[S4] Compute the inverse of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ or show that A is not invertible.
[S5] Find numbers a, b, c, d not all zero such that the plane

$$
a x+b y+c z=d
$$

contains the points $(1,2,3),(0,1,0)$ and $(1,0,1)$. (Hint: Rewrite the equation as $a x+$ $b y+c z-d=0$ and obtain a linear system of three equations in four unknowns using the three points. Choose a special solution to obtain a non-zero solution.)
[S6] Compute the determinant of the matrix $A=\left[\begin{array}{llll}1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 4 & 1 & 3 & 2\end{array}\right]$ and determine whether A is invertible.
[S7] Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $(1,0,0,1),(1,1,0,0),(1,1,1,1)$.
[S8] Let

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 1 & -1 & 1 \\
2 & 1 & 1 & 1 & -1 \\
1 & 1 & 0 & 2 & -2
\end{array}\right]
$$

and you are given that the row reduced echelon form of A is

$$
R=\left[\begin{array}{ccccc}
1 & 0 & 1 & -1 & 1 \\
0 & 1 & -1 & 3 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1. Compute the rank of A and the dimension of $N(A)$. [2 points]
2. Find a basis for $\operatorname{null}(A)$. [3 points]
3. Find a basis for row (A). [2 points]
4. Find a basis for $\operatorname{col}(A)$ consisting of columns of A. [3 points]
[S9] Find the line of best fit $y=a+b t$ for the data points $(1,3),(2,4)$ and $(-1,-1)$.
[S10] Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right]$ and an eigenvector for each eigenvalue.
