Math 323 — Quiz 1 — March 8, 2024

The questions are to be answered directly on this paper as indicated. Total: $50~\mathrm{pts}$.

Name:	
1. Give definitions of each of the following:	(20 pts.)
(a) The sequence of reals (s_n) has limit (i.e. diverges to) $-\infty$.	
(b) $\limsup s_n$ of a sequence (s_n) of reals.	
(c) The sequence (s_n) of reals is Cauchy .	
(d) $\sup(S) = M \in \mathbb{R}$, using inequalitites equivalent to the words in definition 4.3	
2. Define what it means for a sequence (s_n) of reals to converge to $s \in \mathbb{R}$, and then use the definition to prove that $\lim \frac{n}{n+1} = 1$:	(10 pts.)

3. True or false? Indicate your answer for each statement by placing T or F in the blank at the start. Extra credit: give a counterexample below each false statement.	(10 pts.)
Every monotonic sequence of reals has a limit.	
Every bounded sequence of reals is convergent.	
If $\limsup s_n = \liminf s_n$ then the sequence (s_n) converges.	
Every convergent sequence of reals is Cauchy.	
If $\limsup s_n = 1$ then the sequence (s_n) is bounded.	
4. Prove from basic principles and definitions that a convergent sequence is bounded:	(10 pts.)