Math 323 — Quiz 1 — March 8, 2024 The questions are to be answered directly on this paper as indicated. Total: $50~\mathrm{pts}$. | Name: | | |--|-----------| | 1. Give definitions of each of the following: | (20 pts.) | | (a) The sequence of reals (s_n) has limit (i.e. diverges to) $-\infty$. | | | (b) $\limsup s_n$ of a sequence (s_n) of reals. | | | (c) The sequence (s_n) of reals is Cauchy . | | | (d) $\sup(S) = M \in \mathbb{R}$, using inequalitites equivalent to the words in definition 4.3 | | | 2. Define what it means for a sequence (s_n) of reals to converge to $s \in \mathbb{R}$, and then use the definition to prove that $\lim \frac{n}{n+1} = 1$: | (10 pts.) | | 3. True or false? Indicate your answer for each statement by placing T or F in the blank at the start. Extra credit: give a counterexample below each false statement. | (10 pts.) | |--|-----------| | Every monotonic sequence of reals has a limit. | | | Every bounded sequence of reals is convergent. | | | If $\limsup s_n = \liminf s_n$ then the sequence (s_n) converges. | | | Every convergent sequence of reals is Cauchy. | | | If $\limsup s_n = 1$ then the sequence (s_n) is bounded. | | | 4. Prove from basic principles and definitions that a convergent sequence is bounded: | (10 pts.) |