Math 323 — **Midterm** — April 18, 2024

Please PRINT your name on the cover of your exam book(s), indicating if you are using more than one. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. Partial credit will be given. Total: 100 pts.

- 1. Give **definitions** of ANY FOUR of the following five symbols or **boldface** (20 pts.) words.
 - (a) The real-valued function f is **continuous at** $x_o \in dom(f)$. (You may use either sequences or $\epsilon - \delta$.)
 - (b) The real-valued function f is **uniformly continuous** on $S \subset dom(f)$.
 - (c) The series $\sum a_n$ satisfies the Cauchy criterion. (Do not presume any definitions associated with sequences.)
 - (d) The series of reals $\sum_{n=1}^{\infty} a_n = S$, where $S \in \mathbb{R}$. Do NOT presume the definition of partial sum.
 - (e) $\lim_{x\to a^+} f(x) = -\infty$, when $a \in \mathbb{R}$ and f is a real-valued function on \mathbb{R} . (You may use either sequences or " $\epsilon \delta$ ".)
- 2. Use the DEFINITIONS to prove THREE of the following four statements: (30 pts.)
 - (a) If (s_n) is sequence of reals such that $s_n > 0$ for all n, and $\lim_{n \to \infty} (1/s_n) = +\infty$, then $\lim_{n \to \infty} s_n = 0$.
 - (b) Cauchy sequences are bounded.
 - (c) $f(x) = \frac{x}{x+1}$ is uniformly continuous on [0,2].
 - (d) If f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then the sequence $(f(s_n))$ is a Cauchy sequence.
- 3. **Find** each of the following:

(10 pts.)

- (a) $\limsup s_n$, $\limsup s_n$, and a convergent subsequence (s_{n_k}) , if $s_n = \sin(n\pi/2)$.
- (b) $\liminf r_n$, $\limsup r_n$, and the set of subsequential limits, when r_n is an enumeration of all the rational numbers in the interval (0,1].
- (c) A function f(x) that is continuous, but not uniformly continuous, on $[1,\infty)$;
- (d) a convergent series $\sum b_n$ such that $\sum b_n^2$ diverges;
- (e) $\lim t_n$, when $t_1 = 1$ and $t_{n+1} = (t_n^2 + 2)/2t_n$ for $n \ge 1$.

EXAM CONTINUES, please TURN OVER.

4. **Prove** ANY ONE of the following two:

(10 pts.)

Theorem 1 If f is a continuous function on \mathbb{R} and f(a)f(b) < 0 for some $a, b \in \mathbb{R}$, then there exists an x between a and b where f(x) = 0.

(Hint: think Intermediate Value Theorem.)

Theorem 2 If (s_n) is a bounded sequence and k is a non-negative real number, then $\limsup(ks_n) = k \limsup s_n$.

5. **Prove** ANY TWO of the following three:

(30 pts.)

Theorem 3 If f is continuous on a closed interval [a, b], then f is uniformly continuous on [a, b].

(Hint: assume not and use the Bolzano-Weierstrass Theorem.)

Theorem 4 If f is continuous on the closed interval [a,b], then f is a bounded function on [a,b].

(Hint: assume not and use the Bolzano-Weierstrass Theorem.)

Theorem 5 Let f be continuous on $[0, \infty)$ and uniformly continuous on $[k, \infty)$ for some k > 0, then f is uniformly continuous on $[0, \infty)$.

(Hint: this can be a one line proof.)