
 



 Table of Contents 

 
Chapter Pages 

Chapter 1: Interactive Graphing 1.1 – 1.7 

Chapter 2: M-files 2.1 – 2.6 

Chapter 3: Data Plotting 3.1 – 3.11 

Chapter 4: Three Dimensional Plotting 4.1 – 4.12 

Chapter 5: Contour Plots 5.1 – 5.10 

Chapter 6: Symbolic and Numeric Calculation 6.1 – 6.9 

Chapter 7: Parametric Surfaces 7.1 – 7.8 

Chapter 8: Field Plots 8.1 – 8.6 

Chapter 9: Integration 9.1 – 9.13 

Chapter 10: Sequences and Series 10.1 – 10.11 

Chapter 11: Power Series 11.1 – 11.6 

References R .1 

Index of Commands I.1 – I.2 

 

N.B. We use the symbol ! in the text to denote the end of the discussion of an example. 

  



1: Interactive Graphing
Matlab, which is a name contracted from MATrix LAB, is a widely used scientific 
software package.  The goal of these notes is to teach you how to use it to  

! construct graphs of curves and surfaces 

! perform symbolic calculations, such as differentiation and integration 

! write programs to facilitate carrying out the first two tasks 

! present your results as a finished report suitable for printing or presentation. 

In this section we will focus on interactive graphing.  Later, we will consider aspects of 
Matlab that deal with numerical calculations, done both interactively and via 
programming. 

We will make use of the Symbolic Toolbox, which is installed on the system in the Math 
department lab and comes bundled as part of the Student Edition of Matlab.  Using the 
Symbolic Toolbox allows us to employ a language and style that are closer to everyday 
mathematics.  This often makes it easier to figure out how to do things.   

As we said, this chapter will involve a lot of interactive work with the program.  This 
means "show and tell."  We will demonstrate what to do in class, but not write much 
about how to do it.  So coming to the lab will be very useful in figuring out how to 
complete the assignment described later. 

First we will create plots of expressions in one variable. 

1.1 Simple Plots 
First declare a symbolic variable: 

syms x   

Matlab gives no response, but having declared the variable symbolic, we can enter 
expressions in this variable. 

y=sin(x)   

 

y = 

sin(x)   

 

After a brief delay while Matlab loads the package of symbolic commands, the system 
returns the definition you proposed. 
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xExample 1.1: Plot  on the interval [0sin( )y " , 2 ]# .  Enhance the graph with additional 
features. 

Solution: We enter the following command at the prompt. 

ezplot(y,[0,2*pi])   
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This figure appears in a new window, called a Figure window.  We can customize many 
features of the graph interactively using the window.  Among the features we will learn to 
change are 

a) adding grid lines 

b) adding or changing labels and tick marks on the axes 

c) changing the color of the graph 

d) changing the plotting style of the graph, for example, dotted, or a heavier line 

e) adding a legend (useful when we have more than one graph displayed on the same 
axes) 

f) adding or changing the graph title 

g) changing the tick marks on the axes 

All of these can be done using the Plot Tools icon at the top of the Figure window.  After 
some experimentation, you should be able to use this tool to produce the following 
picture: 
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Now suppose we want to add another graph to this one.   

Example 1.2: Plot the sine function and its derivative on the same plot   

Solution: In this case we know the derivative and we can simply define it directly.  For 
more complicated functions, we can have Matlab compute it for us. 

y2=cos(x)   

 

y2 = 

cos(x)   

In order to add the graph of cos( )x  to the previously drawn graph, we must tell Matlab 
not to erase the first graph when it draws the second one.  This is done by typing the 
command  

hold on  . 

Then we simply repeat the ezplot command with y2 instead of y. 

ezplot(y2,[0, 2*pi])   
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Besides adding the new graph to the figure window, Matlab changed the title and did not 
update the legend.  We need to manipulate these features manually, using the Plot Tools 
windows.  See if you can produce the following picture: 
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That was pretty easy.  But there is one more challenge for this lesson.  In Example 1.2  
both graphs produced the same range.  When the ranges are different, which is usually 
the case, the ezplot command uses the range of the last graph plotted.  This may not 
produce the most useful looking graph. 
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Example 1.3: Plot the expression sin(4 )x x  and its derivative on the interval [0, 2 ]# .   

Solution: This time we will use the Matlab command diff to compute the derivative. 
We can proceed as follows 

y=x*sin(4*x); dy=diff(y,x)    % the diff command computes the derivative 

dy = 

sin(4*x)+4*x*cos(4*x)   

(The semi-colon used in the input line suppresses the display of the output of the first 
command). 

Before we create the plots, we must clear the previous graphs.  We do this via 

clf  , 

which stands for "clear figure."  We must again ensure that "hold on" is in effect.  

Now we use our ezplot command: 

hold on;ezplot(dy,[0,2*pi]);ezplot(y,[0,2*pi])   
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Because we plotted the derivative first and the function second, part of the first graph was 
chopped off.  Interactively, we can recover a more useful picture by adjusting the range 
of the axes.  (This can also be done by simply reversing the plotting order, but 
discovering the best order would be time consuming when we had to deal with more than 
two expressions.)  Use Plot Tools to obtain the picture below by changing the range of 
the y-axis and modifying the labels and tickmarks on the x-axis. 
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1.2 Summary 
OK, that's it for the first lesson.  Here's what we discussed in terms of commands: 

clf – clear graphics figure 

diff – compute a symbolic derivative with respect to a variable 

ezplot – name says it all 

hold on  - draw new graph on top of old one ( there is also hold off if you want to 
go back to the overwrite mode) 

syms – declaring symbolic variables 

Your exploration with Plot Tools should have also taught you a lot about the structure of 
Matlab's graphs.  You also became familiar with manipulating commands in the 
Command Window.  In addition to items a) to g) listed earlier, you should also know how 
to change the range of the axes.  Not bad for the first lesson.  Later we will see how to 
control these features in a program, so they do not have to be repeated when you need to 
change the input to a problem. 

1.3 Exercises 
In each of the following exercises you should produce the specified plot on the stated 
interval.  Your plot should contain the following features: 

a) a legend identifying the graph(s) 

b) distinct line styles for the two graphs (one dotted, one solid) and different colors if 
you are using a color printer 

1.6  
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c) both graphs displayed without chopping any values in the range 

d) labels and appropriate tick marks on both axes 

e) graph should display grid lines 

f) A title similar to the one produced in the last graph above.  If you will be handing 
in the output, the title should also contain YOUR NAME. 

Exercise 1.1 Let .  Produce a plot of y and 2sin( ) cos( )y x" x y$  over the interval [ , ]# #% .  
The x-axis tick marks should be at the points with coordinates 2 2, , 0, ,# ## #% % .  

Exercise 1.2 Let 
2

2

1

x
y

x
"

&
.  Produce a plot of y and y$  over the interval [ 2 . 

(Note: You can enter the square root either using exponents or the Matlab function 
sqrt.) 

, 2]%

Exercise 1.3 Plot the expressions 21y x" %  and 21y x" % %  on the interval [ 1 .  

The two graphs should form the circle 

,1]%
2 2 1x y& " .  Look up the axis command in Help 

to see how to get the picture to actually look like a circle, rather than an ellipse. 

Exercise 1.4 Let 
2
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+
, .  Produce a plot of y and y$  over the interval [ , ]# #% .  

From the graph, what is the value of 
2

0

1 sin 5
lim

5 sinx

x

x-

'
(
) *

+
, ?  Confirm the result separately 

using what you know about limits.  

Exercise 1.5 What is the smallest positive value of x (in radians) such that tan x x" ? 
Estimate the answer by plotting the graphs of tany x"  and y x"  on a suitable interval 
and examining the points of intersection.  You can use the Data Cursor icon in the figure 
window to estimate coordinates of points as well as to leave a data marker that can be 
printed to show your estimate. 
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2: M-Files
 

In this section we introduce M-files and use them to construct somewhat more elaborate 
plots. 

Consider the following scenario.  A curve in the plane is given by a set of parametric 
equations.  For example, the equations cosx t"  and siny t" , where 0 2t #. . , define a 
circle of radius one centered at the origin.  In this case it is easy to identify the curve 
geometrically, since the points satisfy the relationship 2 2 1x y& " .  In general, however, it 
is not so easy to identify in an abstract way the curve given by parametric equations of 
the form ( )x f t" , .  We can, however, obtain a plot of the curve, which is often 
a useful starting point for further study. 

( )y g t"

In the first lesson we developed plots directly from the command line.  This is OK for 
simple one or two step procedures, but as soon as our construction begins to involve 
additional steps this approach reveals drawbacks.  For one, if we want to modify our 
work we must typically repeat all the steps.  Two, although we can save or print the 
output, we will have no record of the procedure once we have closed Matlab. 

In an M-file, we type commands in a word processor ("editor") as if we were typing them 
at the command line.  The file is then named and saved.  After the file is saved, we "run" 
it by typing the name of the file at the command line.  When we do so, all the commands 
in the file are executed, as if they had been typed directly at the command line.  If the file 
does not work correctly at first,we go back, "debug" it to remove errors, save it and run it 
again.  We continue with this cycle until the M-file does what we want. 

We will illustrate this procedure by writing a simple M-file that will plot a parametric 
curve defined by the user's input.   

 

2.1 A Simple M-File 

To construct an M-file, click on the New M-file icon, the first icon in the Matlab icon bar.  
This opens a window called the Editor.  The Editor is just a simple word processor that 
has been customized particularly for Matlab.  For example, it recognizes reserved terms 
in Matlab and displays those in color.  Also, where appropriate, it automatically idents 
lines, a feature that is very useful in debugging certain types of programs.   

Example 2.1: Develop an M-file to create a plot of a curve given by parametric 
equations. 

Solution: Open the editor.  We will set up our code so that the input supplied by the user 
comes at the beginning, followed by the code for plotting.  To do this you might type the 
following code in the editor.  Note that the text following a % sign consists of comments.  
These are ignored by Matlab, but are useful to readers who want to understand what the 
code is doing.   

2.1 
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 % Parametric plotting script 

syms t  % declare t a symbolic variable 
 
% User Input section 
 
x=cos(t); % the semi-colon suppresses display of the output 
y=sin(t); 
a=0; % smallest parameter value 
b=2*pi; % largest parameter value 
 
% End of user input. Now we write code to do the basic plotting 
  
clf  % clears current figure 
ezplot(x,y,[a,b])   
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Now save the file.  We saved it in the course website under the name param1.m.  You 
don't have to add the .m when you save it.  The editor does it automatically.  Please note 
that a file name cannot begin with a numeral and should not contain spaces. You should 
use an underscore as a replacement for a space, or use a mix of lower and upper case, 
such as MyFile.   To run the file, type the file name (without the .m) at the command line.  
Or even simpler, click the icon for running an M-file on the Editor toolbar.  If you made 
no errors in copying the code, all you should see is the plot shown above – a circle drawn 
in blue.  The output of all other commands has been suppressed using the semicolon.  
Bravo! ! 

We have written this M-file assuming that a potential user will interact with it directly.  It 
is also possible to include the input command for each of the lines requesting input so 
that a user is prompted to enter the information and need not interact with the code at all.  
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In general, we will not produce code with this structure, but the reader is invited to 
experiment with how this works in the exercises. 

2.2 Fancy Stuff 

In Chapter 1 we learned how to change the characteristics of a graph interactively.  It is 
useful however to be able to change such features programmatically.  For example, we 
may want to change the line style of the graph, or add or change the title, add grid lines, 
etc.  The point is, anything that can be changed interactively can be changed in a program 
as well – and it's not that hard to do so. 

The key idea in manipulating graphics objects, as well as many other objects in the 
Matlab programming environment, is the notion of an object handle.  Roughly speaking, 
an object handle is a name that we (or Matlab) attaches to an object.  We manipulate the 
properties of the object by using the name to assign new values to a particular property.  
The easiest way to obtain a handle for an object is to assign a name to the object when it 
is created.  If you don't attach a name, Matlab will assign one, but it can sometimes be 
hard to figure out exactly what it is. 

Since there are literally hundreds of properties that are associated with the various 
components of a graph, it can be a daunting task to find out exactly how to refer to these 
in Matlab.  The Plot Tools browser that we used in the first lesson can be used to find the 
exact name associated with each property.  The list of such names, with their current 
values, can be found using the Inspector.  More detailed information on a property can be 
found using Matlab's Help pages.  For example, searching for LineSpec in the search box 
in Help, will bring up a page with the most commonly used references. For now, we will 
show how to  

a) add grid lines 

b) change the title 

c) add a legend 

d) change the line style, thickness, and color. 

Here is the modified file which we save as param2.m: 

Example 2.2: Create a parametric plot of the circle, adding items a) through d) above to 
the output. 

Solution: 
% Parametric plotting script 
syms t  % declare t a symbolic variable 
x=cos(t); % the semi-colon suppresses display of the output 
y=sin(t); 
a=0; % smallest parameter value 
b=2*pi; % largest parameter value 
 
% End of user input. Now we write code to do the basic plotting 
 
clf  % clears current figure 
 
h=ezplot(x,y,[a,b]); % this assigns the handle h to the graph. 

2.3 
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% The value of the handle is not displayed, but the plot is. 
 
%Now we change some of the characteristics of the graph window 
 
grid on  % turns grid lines on  
 
% Add a title by concatenating several strings. 
% The command char( ) produces a string from the symbolic expression x.  
title(['x = ',char(x),' y = ', char(y)]); 
 
% Add a legend 
legend('Circle'); % The legend text appears in quotes.  
 
% To change properties of the graph we must use the handle 
% h.  Each property name is listed in single quotes, followed 
% by the value we want to set it to. 
  
set(h,'Color','red', 'LineWidth', 3, 'LineStyle', ':'); 

axis equal; % equalizes scales on the axes.  Useful when non-distorting 
of distances is important (drawing circles and squares, for example).   
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2.3 Publishing an M-file 

When we ran the M-files above we produced a nice graph, which we could print using 
the Print button in the graphics window. However, the M-file code is sitting in the Editor 
window.  We can print that as well, as a separate document.  If we want to produce a 
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report showing the code and the output we can merge these in another word processor, 
say MS Word, but if we then decide to change our code we have to recreate the output 
document.  This is quite cumbersome. 

Matlab, however, provides a way to actually print your M-file code and its output in a 
single document. It's called publishing.  You can publish your result as a webpage, a 
PowerPoint presentation, a Word document, or in several other formats.  We will 
describe how to take your completed M-file and publish it to a webpage, which Matlab 
calls "Publish to HTML." 

In this case, where the M-file produces only a single output at the end, all you do is go to 
the File menu in the editor and select "Publish to HTML."  There is also a button at the 
left side of the icon bar that does the same thing.  In very short order, a window will 
appear with your code and output (the graph).  You can then print that window for a 
complete record of your work and what it produces. Very neat… 

For M-files that produce more than one output we can divide the M-file into regions 
called "cells."  Any output produced by a command in a cell appears right after the cell, 
rather than at the end of the document.  This makes your document into something like a 
report, which is the basic idea of this feature. You can add additional "markup" to cells to 
give them a more distinctive appearance, as well as provide a hyperlinked structure for 
the webpage that is produced.  We will make greater use of this as we proceed in the 
course and we produce work with more complex structure. 

If you would like to learn more about the features of publishing, there is an excellent 
video demo that you can access from the Matlab Help menu.  Click on the Demos tab and 
then open the folder named "Desktop Tools and Development."  Look for the video 
called "Publishing M Code from the Editor."  It will explain this feature far better than 
our simply writing about it. 

That's it for this lesson.  Let's summarize what we have learned. 

2.4 Summary 

M-file: A text file consisting of Matlab commands plus comments. When the file name is 
entered at the command line the Matlab commands are executed. 

semi-colon: - suppresses display of output for a command 

% (percent sign): - allows comment to be inserted in an M-file 

char – converts a symbolic expression into a string (text) 

clf – clears current figure to prepare for new drawing 

handle – a name assigned to a graphics figure that can be used to change the properties 
of the figure 

grid – on/off – toggle command to display or remove grid lines from graph 

title – add a title to current figure 

legend – add a legend to current figure 

2.5 
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set(handle, property, value, property, value, …)  - set specified properties for the 
object named by the handle. 

2.5 Exercises 

Exercise 2.1 Write an M-file that displays the graphs of  

a) the ellipse with parametric equations 4cosx t" , 3siny t" , 0 2t #. . . 

b) the largest circle that can be inscribed in the ellipse (Make sure the circle looks like a 
circle – use the axis equal command.) 

c) the ellipse should be drawn in a solid linestyle and the circle in a dotted style 

d) the graph should have a title that includes your name 

e) the graph should display a legend that shows which graph is the ellipse and which is 
the circle. 

Publish your output to HTML. 

Exercise 2.2 Look up the input command in Help.  Rewrite the M-file param1.m so 
that the input section prompts the user for the parametric equations and the range of the 
parameter.  Print a copy of your code and the output generated from a typical session.  
(Note that you cannot use the option "publish to html" when the code uses the input 
command.) 

Exercise 2.3 A polar curve ( )r f /"  can be plotted by using the parametric 
representation cos ( ) cosx r f/ /" " /  and sin ( )siny r f/ / /" " , with the polar angle 
/  as the parameter.  Write an M-file that displays the graphs of  

a) the polar curve with equation 10cos 4r /" , 0 2/ #. .  (use t instead of /  in your 
Matlab code).  This curve should be drawn with a solid linestyle. 

b) the polar curve with equation r /"  with 0 4/ #. . .  This curve should be drawn in 
a dashed linestyle. 

c) Include a title that contains your name. 

d) Include a legend that identifies the two graphs. 

Publish your output to HTML. 
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In this chapter we will learn an alternate approach to plotting in Matlab.  This approach is 
more general than using the ez-commands.  It will enable us to plot figures that can't be 
created using the ez-commands.  It is particularly valuable for plotting in three 
dimensions. 

 

3.1 Plotting A Line 

Let's start with a simple problem.  How do we get Matlab to draw a line segment joining 
two points in the plane?  To be specific, suppose we want to draw the line segment 
connecting the points  and (2,3) ( 3, 5)% % .  We can use the techniques discussed in 
previous chapters to solve this problem in either of two ways.  Let's review. 

First, we can find the standard y mx b" &  equation of the line.  This is 
8

5 5
y x" %

1
.  Now 

using ezplot we can plot the graph over the interval 3x " %  to 2x " . 

syms x 

ezplot(8/5*x-1/5,[-3 2])   
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A second method is to find parametric equations for the line segment.  The direction 
vector of the line is the vector joining the two given points.  It works out to 5,8 , so the 

3.1  
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vector parametric equations are ( ) 3, 5 5,8t t" % % &r , for 0 t 1. . .  Splitting these into 

component functions and introducing t as a symbolic variable we can develop the plot through  

syms t 

ezplot(-3+5*t, -5+8*t, [0 1])   
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Notice that in the second picture, Matlab chose to plot a larger portion of the x axis than 
in the first figure.  Visually the result is a more accurate representation of the steepness 
than in the first picture.  We will see later how to control this effect by varying the size of 
the plotting window. 

The third, and preferable approach to this problem, draws the line without converting the 
data to any functional form.  We simply give Matlab a list, or array, of the x coordinates 
of the two points defining the line, in the order of smallest to largest.  Then we give it a 
list of the corresponding y coordinates associated with these points (these will not 
necessarily be in increasing order, but they are in this case).  Here's how it's done. 

Example 3.1: Draw the line segment from ( 3, 5)% %  to  by connecting data points.  
Modify the resulting plot by adjusting the aspect ratio, line style, etc. 

(2,3)

Solution: 

Define two arrays x and y that hold the x coordinates, respectively the y coordinates, of 
the points to be plotted. 

x=[-3 2]; y=[-5 3];   Note that x and y will now no longer be symbolic variables. 

Then we use the command plot: 

plot(x,y)   
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The plot command takes every value in the x list and pairs it with the corresponding 
entry in the y list to create an ordered pair.  It then plots the ordered pair and connects the 
plotted points with a solid line.   

You may not like that the graph makes the line appear to have slope 1.  We can get 
Matlab to display a visually correct representation by modifying the aspect ratio, which 
relates the unit of length displayed in the x direction to that displayed in the y direction. 
We can make these distances equal, by issuing the command 

axis equal  , which we used in drawing circles in Chapter 2.  This produces the 
following figure. 
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Further, it is very easy once we generate the data points to create a plot with different line 
styles, color and whether and how the data points themselves are displayed.  For 
example, consider 

plot(x,y, 'or--'); axis equal   
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The string 'or- -' indicates that we want the data points displayed as small circles (o), 
drawn in red (r), with a line style dashed (- -).  You can find a complete list of these line 
specification ('spec', for short) symbols by searching for LineSpec in Matlab's Help.  
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Note that is not necessary to include all options.  If you only wish to change the line style 
to dashed, then use the string '- -' and omit the others. ! 

 

3.2 Plotting Graphs 

The plot command can be used to create graphs of functions.  Basically, the procedure 
imitates what you learned to do in school – make a table of values, plot the associated 
ordered pairs, and connect the points with line segments.  With Matlab all we have to do 
is create the table of values; Matlab does everything else.  Matlab has two features that 
make it very easy to generate the table of values.  Let's start with a rather standard 
example.   

Example 3.2: Use the plot command to create the graph of 2y x"  on the interval 
. [ 2, 2]%

Solution: 

a) The first step is to generate your x values.  In order for the graph to be smooth looking 
we usually need to select at least 25 points to plot.  When a graph is turning quickly, we 
will need even more points.  However, we will first construct a more primitive graph so 
you can see how everything works.  The linspace command is used to generate x 
values. 

x=linspace(-2,2,5)   % generates  5 equally spaced points in the interval [-2, 2] 

x = 

    -2    -1     0     1     2   

The variable x has been assigned as the name of the array [ -2 -1  0  1  2] generated by the 
command.  Usually, we don't bother to display the array.   

b) For each value in the array x we want to compute the y value defined by .  You 
might think that you have to write a program to get Matlab to do this, but you don't. 
Namely, Matlab has a special operator, the dot operator.  Look what happens if you type 

2y x"

y=x.^2   

y = 

     4     1     0     1     4   

The dot operator “vectorizes” the operation that follows it, in this case the squaring 
procedure.  This tells Matlab to carry out the squaring separately on each entry of the 
input x, exactly what we needed to do.  We name the resulting array as y. 

(Note: If you omitted the dot Matlab will complain. 

y=x^2   

??? Error using ==> mpower 

Matrix must be square.   
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Matlab thinks you are trying to square the array x using matrix multiplication.  But that 
procedure is only defined for square arrays, hence, the complaint.  We won't deal with 
matrix multiplication in this course.  You'll see it when you study linear algebra.) 

c) Now we can let Matlab plot the points whose x coordinates are taken from the x list 
and whose y coordinates are taken from the y list. 

plot(x,y, 'o-')   % show plotted points with an o and use a straight line to connect points 
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It's not too pretty, but it does show what is going on.  The plot command does not try to 
smooth things.  It just draws lines between the points that you give it, in the order in 
which they appear in the arrays.  To get a better picture, you need to use more plotting 
points.  Let's repeat the construction using more points, suppressing unnecessary output. 

x=linspace(-2,2,25); y=x.^2; plot(x,y)   
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Much better.  ! 

OK – we are about ready to end this lesson, but first we want to indicate how one can add 
annotation to the graph produced by plot.  Notice that the graph above has no title, no 
axis labels, and no grid lines.  It's pretty barebones.  We add those features to the figure 
using the title, xlabel [resp. ylabel] and grid commands.  We haven't discussed 
xlabel.  Look it up in Help to see how it works.  We give an example below.  If you 
want to change the thickness of the plotting line, you can do that in the same way we did 
in Chapter 2, by constructing a handle to the graph and using the set command to 
change the LineWidth property.  However, with plot there is an easier way.  You can 
include the new spec right in the plot command.  For example, 

plot(x,y, 'r', 'LineWidth',3); xlabel('x');ylabel('y');grid on   

produces 
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 Let's summarize what we have covered: 

 

3.3 Summary 

arrays: - these are just lists of numbers enclosed in brackets.  Arrays are created either 
using Matlab commands (like linspace) or can be entered from the command line 
directly as [value value value …], where the values are separated by spaces. 

linspace: - command to generate an array of a specific number of equally spaced 
points in an interval. 

dot operator: -  When preceding an ordinary operation, this vectorizes the operation so 
that when the variables are arrays, the operation is carried out on each component.  The 
dot operator is only needed for multiplication, division, and exponentiation.  Component 
addition of arrays and addition/multiplication by a scalar do not require the dot.  Study 
the following examples to understand the behavior of the dot operator. 

Example 3.3: Using the "dot" operator. 

x=[1 2 3 4]   

x = 

     1     2     3     4   

y=[2 4 6 8]   

y = 

     2     4     6     8   

x+y   % add corresponding components of the two arrays.  No dot needed. 
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ans = 

     3     6     9    12  

x.*y   % multiply arrays componentwise.  

ans = 

     2     8    18    32   

x./y    % divide arrays term-by-term; make sure no entry in y is zero. 

ans = 

    0.5000    0.5000    0.5000    0.5000   

2*y    % multiply each entry of y by 2.  No dot needed when multiplying by a scalar. 

ans = 

     4     8    12    16   

x+1    % add 1 to each entry of x.  No dot needed when adding a scalar to each 
component. 

ans = 

     2     3     4     5   

 ! 

plot: - plots pairs of points taken successively from input arrays x and y.  Note that the 
input arrays x and y must have the same number of elements and must have the same 
shape in terms of row, column structure.  The plotted points are connected in the order in 
which they appear in the arrays. 

axis: -  this can be used to set the plotting window to a specific rectangular region in 
the x,y plane.  Typing  axis([a b c d]) creates a plot window over the rectangle 

.  The command can also be used to have Matlab adjust the window to 
achieve a desired effect (e.g. axis equal equalizes the aspect ratio, i.e. the physical 
length displayed on the screen corresponding to a unit of length in direction of the 
coordinate axes.) 

[ , ] [ , ]a b c d0

LineSpecs:- These are string notational abbreviations for various options of color, line 
style, and plotting point marker.  These specs can be changed directly when the graph is 
generated by plot, unlike when using ezplot, where we have to access the graph 
handle using set to make such changes.   Also included in LineSpecs, are properties 
such as LineWidth, MarkerSize, and MarkerFaceColor. 

xlabel, ylabel:- commands to add text labels to the coordinate axes. 

3.4 Exercises 

The first four problems are for practice and comprehension.  Problem three is especially 
important because it introduces an alternate way of generating arrays.  
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Exercise 3.1  In this exercise use pi to enter the mathematical constant #  in Matlab. 

Enter a list x whose entries are the values 
3

0, , , , ,
4 2 4

# # ## # .  You can do this using 

linspace (how?) or by just typing the values directly.  Now compute sin( )x  and 
cos( )x .  Observe that Matlab automatically vectorizes the computation for built-in 
functions.  Compare Matlab's response when you enter each of the following commands: 

>> x.*sin(x) 

>> x*sin(x) 

Exercise 3.2  Using linspace, generate an array of the integers 1 to 10.  Call that array 
k.  Using that array generate an array whose entries are the numbers 2 2 2

1 1 1 1
1 2 3 10

, , , ,! 2 . 

Exercise 3.3  The linspace command is useful for creating equally spaced arrays in 
which your concern is on the number of points created.  Sometimes it is more useful to 
focus on the spacing between the points.  In that case, Matlab provides another 
mechanism, the colon operator.  Enter the following commands at the command line 
(without the comments). 

>> 1 : 10  % generate integers from 1 to 10.  You do not need the spaces. 

>> 1 : .5 : 10  % Generate numbers from 1 to 10 with spacing of .5 . (You can read the symbol as 
“from 1 by .5 to 10.” When the middle number is omitted, it defaults to 1.) 

>> 10 : -1 : 1  % You can generate numbers in decreasing order 

>> 1 : 1.5 : 9  % The increment does not have to fill out the range exactly.  Matlab stops at the 
largest value in the list before the endpoint. 

a) Generate the sequence in Exercise 3.1 using the : operator. 

Exercise 3.4  Here are some short answer questions.  Make sure you first do Exercise 3.3. 
You should be able to answer these without using the computer, but feel free to check 
your work by actually using Matlab. 

a) State a single Matlab command that will assign to the variable x the vector  
, without displaying the result. [5,10,15, ,990,995,1000]!

b) Generate the sequence 0:.01:1 using the linspace command, without 
displaying the result. (Hint: How many points are generated by the colon 
command?) 

c) How would you create a vector whose entries are the numbers of the interval [0, 2 ]#  
which subdivide the interval into 20 intervals of equal length? 

d) If x=[1 2 3 4], what Matlab expression involving x will produce the output 
, i.e. [ ? 2 3 4[1 2 3 4 ] 1 4 27 256]

e) If x=[1 2 4 5], what Matlab expression involving x will produce the output 
, i.e. [1 ? [1 1/ 2 1/ 4 1/ 5] .5 .25 .2]

Exercise 3.5  Write an M-file that does all of the following: 
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a) Uses the plot command to draw the square with vertices (1 , (3 , (3 , and 
.  The square should be drawn in red (at least your M-file should show that). 

, 2) , 2) , 4)
(1, 4)

b) Uses the plot command to draw the two diagonals of the square in blue with a 
dotted line. 

c) Uses the axis command to change the plotting window to the region [  
and then to adjust the axes so that the square looks like a square and not a rectangle. 

0,5] [0,5]0

d) Finally, add a title: “A Square by your name” 

Publish your M-file (put your name in a comment at the beginning of the M-file) and the 
graph. 

Exercise 3.6  Let . (This exercise partially duplicates Exercise 1.1, but 
you are expected to generate the output using an M-file.) 

2sin( ) cos( )y x" x

]
Write an M-file that uses the plot command to draw graphs of y and  over the 
interval [ ,

y$
# #% .  In this problem, you should enter the derivative formula by hand when 

you need numerical values of .  Later in the course we will discuss how to mix 
symbolic and numerical calculations.  The plot should have the following features: 

y$

a) a legend identifying which graph is which, for example one graph identified as y and 
one as y' or dy. (See help on the legend command.) 

b) distinct line styles for the two graphs (one dotted, one solid) and different colors if 
you are using a color printer. 

c) both graphs displayed without chopping any values in the range 

d) labels on both axes and x-tick marks at the points , ,0, ,
2 2

# ## #% % .  See Matlab's 

Help on the commands Xtick and Xticklabel to find out how to change the 
labeling of the axis tick marks in an M-file.  You cannot actually get the labels 
displayed with the Greek font.  You can use pi/2, pi, etc. 

e) A title: “Graph of  and y'”.  The title should also contain YOUR 
NAME . 

2sin( ) cos( )y x" x

f) Grid displayed. 

Publish your M-file. 

Exercise 3.7  The plot command can also be used to plot curves defined 
parametrically.  One simply uses the parametric equations ( )x x t" , ( )y y t"  to generate 
x and y values from a subdivision of the parameter interval.  Using this idea, generate a 
plot of the circle  from the parametric equations 2 2 1x y& " cosx t" , , siny t"
0 2t #. . .  Use the axis command to ensure that the graph looks circular.  Label the 
axes and add a title.  Publish your M-file. 
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4: Three Dimensional Plotting
In this section we will learn the basics of 3D plotting.  We'll cover both the ez-mode and 
the not-so-ez mode.  The latter is particularly needed when you wish to show more than 
one object in the same picture, for example, a curve and a tangent line, or two surfaces. 

4.1 EZ-Plotting 

4.1.1 Curves 

If we have parametric equations for a curve in space then it is very easy to obtain a graph 
using the command ezplot3.   

Example 4.1: Draw the helix given by the parametric equations cosx t" , , siny t" z t"  
when t varies from 0 to 4# . 

Solution: 
syms t; 

x=cos(t); y=sin(t); z=t;  

ezplot3(x,y,z, [0, 4*pi])   % The list [0, 4*pi] gives the range of the parameter t. 
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The picture has one small defect – the scene is not viewed from the perspective of the 
first octant, as we customarily do.  You can see this from the tick marks on the x and y 
axes.  If this is disturbing, you can correct it in two ways.  First, you can manually rotate 
the image in the figure window by clicking on the Rotate3D icon and then clicking and 
holding the cursor on the figure while you drag the cursor on the screen (easier to do than 

4.1 
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describe).  You do this until the tick marks arrive in their standard configuration.  
Alternatively, you can change the viewpoint using the view command. 

view([1 1 1])   % the argument [1 1 1] defines the point from which we view the curve. 
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A rather neat feature of the ezplot3 command is the option 'animate'. This generates a 
point that moves along the curve in the direction it is traversed as the parameter increases. 
We can't show this is in the text, so enter 

ezplot3(x,y,z, [0,4*pi]), 'animate'); view([1 1 1]);   

and see what happens.  If you miss the show, there is a repeat button in the window that 
lets you replay it. ! 

4.1.2 Surfaces 

Constructing a 3D surface via ez-plotting is also very straightforward.   

Example 4.2: Plot the saddle-shaped surface whose equation is 2z x y2" % , over the 
rectangle [ 2 .   , 2] [ 2, 2]% 0 %

Solution: Simply enter 

syms x y; 

z=x^2-y^2; 

ezsurf(z, [-2 2 -2 2]) % we could have specified the plotting domain simply as [-2 2], since the 
same interval is used for both x and y. 
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Again, the viewpoint is not quite standard, but the basic shape of the graph is 
immediately apparent.  If it isn't, you can select the Rotate3D button and give yourself a 
tour of the surface until you throroughly understand it.  Notice that the graph appears to 
be covered with a fine grid, as if it were woven.  This is not simply an artistic effect.  We 
will discuss the mathematical basis for the picture later when we consider the not-so-ez 
graphing method. ! 

Most of the time, when plotting a surface given by ( , )z f x y" , a rectangular domain for 
the independent variables is adequate.  However, when dealing with a surface of 
revolution obtained, for example, by rotating a curve in the y,z plane around the z axis, it 
is more instructive to have a picture over a circular domain.  We can achieve this using 
ezsurf by adding an optional argument, 'circ'.  This produces a plot over the largest 
circle inside the rectangular domain we specify.   

Example 4.3: Compare the graphs of 2z x y2" &  over the rectangle [ 2, 2] [ 2, 2]% 0 %  with 
the plot drawn over the inscribed circle centered at the origin lying inside this square.   

Solution: We use the subplot command to place these pictures side by side. 

z=x^2+y^2; 

subplot(1,2,1); ezsurf(z, [-2 2]); 

subplot(1,2,2); ezsurf(z,[-2 2],'circ')   
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In this case, the subplot command sets up a 1x2 array to hold the graphical output. The 
left most panel is panel number 1 and the right most is panel number 2. The command 
subplot(1,2,1) directs the next graphical output to the first panel and 
subplot(1,2,2) directs the next output to the second panel. 

Both surfaces are covered by a rectangular-like net, but the second shows the circular 
symmetry much more clearly. ! 

4.2 Data Plotting 

4.2.1 Curves 

Plotting space curves is similar to plotting plane curves of the form ( )y f x" .  The 
principal difference is that the parameter plays the role of the independent variable and 
we must divide the parameter interval into small pieces to generate points on the curve, 
which Matlab then connects with line segments.  Plotting options can be added to the 
plotting command, as we did for 2D plots.  

Example 4.4: Use data plotting to plot the helix in Example 4.1.  Add a second 
concentric helix to the figure. 

Solution:  The appropriate command is now plot3. 

t=linspace(0,4*pi,50); 

x=cos(t); y=sin(t);z=t; 

plot3(x,y,z, 'r', 'LineWidth', 2); 

view([1 1 1]); grid on   
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Notice that we had to turn the grid on.  The graph has no labels on the axes, or title.  
These must be added.  For example, to add axis labels, which is quite important in 
parametric plotting, type 

xlabel('x');ylabel('y');zlabel('z');   
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Naturally, you would want to do this in an M-file so as not to have to repeat all the lines 
each time you wished to change something. 
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We can add another curve to the picture. This can be done directly in the original plot3 
command or we can add it afterwards using hold on.  For example, working from the 
graph already generated we can add another concentric helix via, 

hold on; 

x=.75*cos(t);y=.75*sin(t);z=t; 

plot3(x,y,z, 'b', 'LineWidth', 2)   
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 ! 

4.2.2 Surface Plots 

Matlab plots surfaces in a way that is analogous to the way it plots curves.  The latter are 
plotted as connected line segments.  Surfaces are constructed as connected 4-sided 
patches.  It is useful to understand Matlab's construction and not just mimic the steps.  
Suppose we want to plot the surface 2z x y2" &  over the square region 0 2  and 

.  The idea is to divide this region into a rectangular grid. In the example shown 
below we use a 20 x 20 grid. 

x. .
0 y. . 2
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The vertices of the grid have coordinates (  in the bottom row, 
to (  in the top row. In this case we have 21 x 21 =441 grid 
vertices.  Matlab stores the information about the grid vertices in a pair of matrices, i.e. 
rectangular arrays of numbers.  In this case these would be 21 x 21 matrices.  The x 
matrix contains the x coordinate of each grid vertex.  All rows of the x matrix are 
identical.  Each one just consists of the numbers 0, .1, .2, .3, …, 2, since these repeat in 
every row.  The y matrix records the y values of the grid vertices.  The top row of this 
matrix holds the y values for the points at the bottom of the grid.  Thus, this row is 0, 0, 
0, …, 0.  The next row holds the y values from the second row from the bottom.  Thus, 
this row is .1, .1, …, .1, etc.  We will see below how Matlab constructs these matrices. 

0,0), (.1,0), (.2,0), , (2,0)!
0, 2), (.1, 2), (.2, 2), , (2, 2)!

Once we have created these matrices, called the meshgrid, Matlab needs to calculate the z 
value on the surface  for each grid vertex.  This is where we use array 
operations, as we did in plotting curves.  When we write 

2z x y" & 2

. ^ 2 .^ 2z x y" & , Matlab will 
take every value in the x matrix described above and the value in the corresponding 
location in the y matrix and compute the value of z associated with that pair.  Moreover, it 
stores these values in a matrix for z of exactly the same size (in this example 21 x 21), so 
that it knows what value of z goes with which pair of x and y values.  This is crucial in 
enabling Matlab to create a coherent picture. 

Let's illustrate these steps in a small problem.  Instead of using 21 grid points in each 
direction, we will use three in the x direction and five in the y direction.  Thus the x 
interval [0  will be divided by the grid points 0, 1, and 2.  The y interval will be 
divided by the points 0, .5, 1, 1.5, 2 .  The meshgrid command is used to construct the 
matrices x and y described above.  We do this as follows: 

, 2]

x=linspace(0,2,3) % list of three x values in interval [0,2] 

y=linspace(0,2,5) % list of five y values in interval [0,2] 

[ x y]=meshgrid(x,y)    % matrices describing 2D grid points 

 

x = 

4.7 



4–Three Dimensional Plotting 

     0     1     2 

y = 

         0    0.5000    1.0000    1.5000    2.0000 

x = 

     0     1     2 

     0     1     2 

     0     1     2 

     0     1     2 

     0     1     2 

y = 

         0         0         0 

    0.5000    0.5000    0.5000 

    1.0000    1.0000    1.0000 

    1.5000    1.5000    1.5000 

    2.0000    2.0000    2.0000   

In the first two lines we create lists of the x and y points in each subinterval.  Matlab will 
use these as inputs to the meshgrid command to construct the matrices that we 
described above.  The meshgrid command takes the two input arrays x and y and 
produces two output matrices.  It does this simply by repeating the entries of the array x a 
certain number of times and doing the same for y, after transposing the latter to a column 
array.  Since we no longer have a need for the original list of x and y values, we assign 
these names as the output of meshgrid, as in the statement.  This is a common practice 
in programming that helps one economize on names of variables.  Normally, we would 
terminate each of the statements above with a semicolon, since the output is not at all of 
interest to us.  Next we compute z. 

z=x.^2+y.^2   

 

z = 

         0    1.0000    4.0000 

    0.2500    1.2500    4.2500 

    1.0000    2.0000    5.0000 

    2.2500    3.2500    6.2500 

    4.0000    5.0000    8.0000   

The reader ought to check that the values in the z matrix are obtained by applying the 
formula for z to the respective entries in the x and y matrices. 

Now to complete the process, we use the surf command: 

surf(x,y,z)   
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At this point the picture is not very informative, but it illustrates Matlab's methodology. 
Each location in the matrices x, y, and z determines a point 0 0 0( , , )x y z  on the surface.  

These points are connected to each other by line segments according to the layout in the 
grid.  Matlab then creates colored "patches" from this collection of four-sided polygons. 
The patches typically look like parallelograms (in this example they actually are), though 
in fact they may not actually be planar (in general, each consists of two triangles with the 
same color, attached along a common diagonal edge).  When the grid is fine enough we 
get the appearance of a smooth surface. 

Although a finer grid gives a better approximation to the surface, it requires greater 
computational effort to render all the information on the screen.  As a result, when we 
attempt to interact with the 3D model using some of the interactive features we may find 
the results slow and jerky.  This is somewhat dependent on the processing speed of your 
individual computer.  As a rule of thumb, you should probably limit exploratory work to 
grids of no more than 25 x 25 points.  

Example 4.5: Use surf to plot 2z x y2" &  over the rectangle [ 2, 2] [ 2, 2]% 0 % . 

Solution: Normally, the following lines would be part of an M-file.  They produce the 
figure shown below. 

x=linspace(0,2,25); y=linspace(0,2,25); 

[x y]=meshgrid(x,y); 

z=x.^2+y.^2; 

surf(x,y,z); view([1 1 .4]); xlabel('x');ylabel('y');zlabel('z'); 

title('First Octant View of z=x^2+y^2')   
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The title command shows how to place a nicely formatted mathematical expression in 
your title.   ! 

The curves on the surface created by the grid pattern are approximations to the sections 
of the surface by vertical planes x const"  and y const" .  In effect, each patch in the 
interior is bounded by two pairs of such curves, since on the edge of any patch only one 
coordinate changes at a time.  In the next lesson we will consider how to obtain sections 
of the surface where , which are known as contour curves. z const"

4.3 Summary 

We discussed the following commands related to plotting: 

ezplot3: - plotting 3D space curves.  Has a nice animation option. 

ezsurf: - ez plotter for 3D surfaces given by functions.  Convenient, but not so easy to 
customize output.  Particularly difficult to combine 3D plots. 

plot3: - 3D curve plotter using data points 

meshgrid:- creates matrices of 2D grid points from interval decomposition 

surf: - 3D surface plotter using data points.  Output needs to be customized, but 
provides greatest flexibility 

Some extras we touched on: 

subplot:- create an array of plots that are displayed and printed together 
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view:- set the viewpoint for drawing the 3D scene.  The view can be specified in terms 
of a point in space or through a pair of angles.  See the help page on view for details. 

4.4 Exercises 

Exercise 4.1 Let ( ) cos , cos 2 , cos3t t t"r t , over the interval 0 2t #. . .  

a) Plot this parametric curve using ezplot3.  Use the 'animate' option to view how the 
curve is traversed as the parameter varies.  How many times is the curve traversed 
when t varies over the parameter interval?  What is the smallest parameter interval for 
which the curve will be traversed exactly once? 

b) The following M-file is supposed to display the parametric plot in a) viewed from 
(1,1,1) and then display three views of the same plot showing the projection into the 
coordinate planes.  Complete the missing arguments in the code and place titles that 
state the projection that is being viewed on that screen.  Note: The pause command 
halts execution of the M-file until the user presses a key. You may print a screen 
while the program is paused. 

syms t 
x=cos(t);y=cos(2*t); z=cos(3*t); 
clf 
ezplot3(x,y,z,[0, 2*pi]); 
view([1 1 1]); 
title(???) 
pause 
view(???); 
title(???) 
pause 
view([1 0 0]) 
title(???) 
pause 
view([0 1 0]) 
title(???) 

c) Print your M-file and the four screens that it generates.  Make sure to include your 
name.   You can also publish this to HTML.  In doing so, you should first remove the 
pause commands (which cause the publishing program to "hang.").  Then, insert 
cell dividers after each view command.  Put appropriate titles in each cell divider 
line.  The various graphs should now print following the commands that generated 
them. 

d) BONUS!!  This is not a Matlab problem.  Find an equation of the form  for 
the projection of the curve into the x,y plane.  Find an equation of the form  
for the projection of the curve into the x,z plane.  Can the projection into the y,z plane 
be described as the graph of a function 

( )y f x"
( )z g x"

( )z h y" ?  Justify your answer by referring to 
the figure you obtained in part b). 

Exercise 4.2 Using plot3, write an M-file that draws  

a) the helix with parametric equations cosx t" , siny t" , z t" , for 0 2t #. . .  
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b)  On the same graph, but in a different color, line style, and thickness, draws a portion 

of the tangent line to the helix at the point 2 2( , ,2 2 4)# .  The portion of the 

tangent line should be chosen to extend as far as possible within the first octant.  
Include labels on the coordinate axes, and a grid.  Publish to HTML.  Make sure your 
name appears in the printout (you can include it in a comment line, for example), and 
the combined graphs use a view that clearly shows the tangent line. 

Exercise 4.3  Using ezsurf make a plot of the graph of 3 2 22 5z x xy x y2" & & &  over 
the rectangle  and . 2.5 .6x% . . 3 3y% . .

Exercise 4.4 Using surf make a plot of the graph of 2 2( , ) ( )2f x y x y" %  over the 
region [ 2 .  Use a 25x25 grid. , 2] [ 2, 2]% 0 %

Exercise 4.5  Write an M-file to plot the parabolic cylinder 2y x"  using the surf 
command.  You will need to treat x and z as independent variables, using a meshgrid in 
the x,z plane and generating the y values using the formula.  Use a 15 x 15 grid of the 
rectangle  and .  Locate the viewpoint at (1,1,1), add labels to each 
axis, and put a title on the graph that includes the formula for the surface.  Publish to 
HTML. (Be sure to include your name in a comment). 

2 2x% . . 2 z% . . 2
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5: Contour Plots
In this section we will study contour plots.  These are related to curves defined implicitly 
as the solutions of an equation ( , ) 0f x y " , so we will take a look at that topic as well. 

5.1 Basic Contour Plots 

Matlab has several commands for generating contour plots.  We will omit the ez-
commands because one can't easily customize them in ways that are particularly valuable 
for this type of plot. 

The standard contour plot commands use the same general framework as surf.  Namely, 
we generate a pair of matrices holding the x and y coordinates of the grid points, then 
generate the z values from these using a vectorized expression.  In these notes we will 
analyze the contour plot of the surface .  We describe the process step-
by-step, but the commands should be written to an M-file for convenient modification. 

3 3 3z x y xy" & %

Example 5.1: Generate a contour plot of the function  over the square 
 and . 

3 3 3z x y xy" & %
2 2x% . . 2 2y% . .

Solution: 

a) Select a plotting region: 

x=linspace(-2,2,25); y=linspace(-2,2,25);[x y]=meshgrid(x,y);  

Now generate the z values using a vectorized expression for z. 

z=x.^3+y.^3-3*x.*y;   

We generate a 2D contour plot using the command contour. 

contour(x,y,z)   

 

5.1 
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 ! 

Matlab generates a plot using a default number of level curves (contours with constant z 
value.)  They are not labeled with the z value associated with each curve.  The colors 
enable one to distinguish the relative heights on each curve.  Reds and oranges 
correspond to larger z values than blues and purples. (To remember, think of the hot, red 
sun (high) and the cool, blue oceans (low) – OK, it helps me.) 

5.2 Labeled Contour Plots 

The first improvement over the basic contour plot would be to get Matlab to label the 
curves with the associated z value.  We can do this by passing to the function clabel 
the so-called contour matrix (a matrix that holds all the data for drawing the curves) and 
the "handle" to the contour plot.  You will recall from Chapter 2 that the handle is a name 
that we can ask Matlab to assign to identify a particular graphic object.  We can access 
these bits of important information about the plot by assigning variables to the output of 
the contour command.  Without going into excruciating details on all of this, let's see 
how it is done. 

Example 5.2: Generate a labeled contour plot of the function  over the 
square  and . 

3 3 3z x y xy" & %
2 2x% . . 2 2y% . .

Solution: 
x=linspace(-2,2,25); y=linspace(-2,2,25);[x y]=meshgrid(x,y); 

z=x.^3+y.^3-3*x.*y; 

[C h]=contour(x,y,z);  %generates graph and assigns appropriate 
variables to output for labeling 
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clabel(C,h);   
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This is much better.  We can add a grid, if we wish, as well as axis labels and title in the 
usual way.  Just to remind you, here is a nice title: 

title('Contour Plot of z = x^3+y^3 - 3xy')   
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 ! 

It is very instructive to explore this plot with the Data Cursor, which can be activated 
using an icon at the top of the figure window.  (This feature may not work on some 
systems because of issues related to graphics card drivers.)  As you move the cursor 
through the figure, the program displays both the coordinates of the point under the 
cursor and the z value (level value) of the point.  Wouldn't it be great if you could click 
the mouse button and have the program generate the specific level curve that passes 
through a point, (in other words, connect all the x,y values at that same level)?  Well, 
sorry, but we can't do this.  However, as a consolation prize we can write our M-file to 
produce specific level curves. 

Programatically, we can get Matlab to add specific contour lines to the picture.  We do 
this by creating a list of z values for which we want to see the level curves and pass this 
list to the contour command.  We also pass the list to clabel so that the curves are 
labeled as well.  In this case we would like to see level curves corresponding to values of 
z between -1 and +1. 

Example 5.3: Add specific level curves to the contour plot generated in Example 5.2. 

Solution: 

We assume the previous plot has been generated and is currently displayed.  We then 
execute the following additional code: 

vals=-1:.25:1; % level values to plot.  Recall the : operator described 

% in the exercises of Chapter 3. 

hold on 

[C h]=contour(x,y,z,vals); 

clabel(C,h,vals);  % add labels to the new curves 

hold off   
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We seem to have generated too many labels.  The picture appears cluttered.  In this case 
we can either pass a shorter list to the clabel command, or we can use a neat 
interactive option to select the labels we care to see.  The latter is done via the command 
clabel(C,h,'manual').  The help page for clabel contains a pretty good 
description of how this option works.  As with all things interactive, it is most easily 
discussed by actually using it, which you will do in class.  (N.B. This feature also has 
graphics driver issues, so may not work on all systems.)  Here, we'll redo the plot with a 
truncated list of levels to be labeled.   

vals=-1:.25:1; 

hold on 

[C h]=contour(x,y,z,vals); 

clabel(C,h,-1:.5:1);  % fewer labels in this list 

hold off   
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This is a bit less muddy.   ! 

Look at the picture.  Do you see a point where the surface  might have a 
a maximum or minimum?  What about a saddle point, where the function increases in 
some directions and decreases in others?  By examining z values with the Data Cursor see 
how well you can approximate the location of these points.  Later in the course, you will 
use methods of calculus to determine these points analytically.  As we will see, such 
methods are often difficult to carry out, (though not in this case) so the simple technique 
used here in visually identifying the possible location of such points is very helpful. 

3 3 3z x y xy" & %

There is one other strange phenomenon exhibited above.  One of the level curves appears 
to be a straight line (which one?)  You can find the equation of this line by examining the 
graph.  Can you show algebraically that all points on this line produce the same value of z 
and therefore define a level curve? Try it. 

5.3 Contour and Surface Plots 

The graph of the surface can be visualized along with the contour curves using the 
command surfc.  Here is the original contour set shown lying beneath the graph of the 
surface. 

Example 5.4: Draw a combined contour and surface plot for the function 
. 3 3 3z x y xy" & %

Solution: 

Assuming the data values x, y, and z have been obtained as above we use 

surfc(x,y,z); view([1 1 1])   
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As usual, rotating the figure gives a clearer sense of the relationship between the level 
(contour) curves and the surface.  In the exercises we will explore how the contour curves 
can be drawn on the surface. ! 

5.4 Implicit Plots 

The level curves shown in a countour plot of ( , )z f x y"  are plane curves given by 
setting z equal to a constant c.  In other words, they describe the location of points 
where .  In the example considered above these are the 

curves

( , )f x y c"
3 3 3x y xy& % " c

0

.  For most such curves, we cannot solve for x or y as functions of 
the other variable and we say the curves are defined by implicit equations (remember 
implicit differentiation).  The contour plot can be viewed as a collection of such implicit 
curves for different values of c.  Sometimes, however, we would like a picture of simply 
one or two such curves and the mechanism of generating a contour plot is not the right 
way to achieve this.  In fact, sometimes Matlab errs in the shape of curves it forms in the 
contour plots because of the limited information with which it is working. 

Suppose for example that we want to plot the single curve 3 3 3x y xy& % " , which is one 
of the curves in the contour plot generated earlier.  We can actually get Matlab to plot this 
using our old friend ezplot.  When we used ezplot before, we passed symbolic 
expressions to it.  However, since we are working here with numeric variables, we use an 
alternate method – passing the expression as a string. 

Example 5.5: Draw a plot of the implicitly defined curve 3 3 3 0x y xy& % " . 
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Solution: 
ezplot('x.^3+y.^3-3*x.*y', [-2 2])   
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The string should be the vectorized form of the expression .  Matlab assumes you 
want to plot .  If you want 

( , )f x y
( , ) 0f x y " ( , )f x y c" , just move the constant to the left side 

and include it in the string.  The domain is indicated by the entry [-2 2].  Matlab assumes 
that both x and y will vary over the same bounds.  In other words, you are limited to 
sketching over a square region.  You should compare the picture above with the zero 
level curve in the contour plot.  You will see that Matlab had trouble in the latter plot in 
analyzing the proper shape of the curve near the origin. ! 

5.5 Summary 

We introduced three new commands, but each has a number of options with which you 
need to be acquainted to make effective use of them.  Of course, everything we've said, 
and more, can be found in Help. 

contour: - draw a 2D contour plot of a function of two variables 

clabel: - generate labels for a 2D contour plot – various options for specifying the 
labeled curves. 

surfc: - generate a surface plot and a contour plot lying below it. 

ezplot: - generate a plot of an implicit curve ( , )f x y c"  
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5.6 Exercises 

Exercise 5.1.  Let 2( , ) 2 4f x y x xy y" & & .  Write an M-file that uses subplot to 
generate a 1 x 2 array of plots with the following specifications. 

a)  The left plot should use surfc to generate a plot of the graph ( , )z f x y"  and 
contours over the region  and 1 1x% . . 1 y 1% . . .  Use a 25 x 25 grid.  Display grid 
lines, labels on all axes, and a title that includes the formula for the function. (Use a 
multi-line title if necessary.) 

b) The right plot should  

i) display the default contour plot of  over the square [-1,1]x[-1,1] using a 25 
x 25 grid, with labels on all contour lines.  

( , )f x y

ii) add five additional contours at levels between 0 and 0.5.  

iii) label the additional contours using clabel.  

iv) include labels on the axes and a title  

c) Does the function have any maximum or minimum values in the domain 
?  If so use either the Data Cursor or the coordinate grid to estimate the x 

and y values at the maximum/minimum points.  Specify these estimates in a comment 
line in your M-file. 

[ 1,1] [ 1,1]% 0 %

Publish your M-file (include your name in a comment).  The total should be at most two 
pages. 

Exercise 5.2 Suppose 2 2( , ) sin(3 1) cos(2 2 )f x y y x y x" % & & % .  

a) Write an M-file that will produce a labeled contour plot for  over the region ( , )f x y

1 2( , ) | 2 2, 1 1S x y x y" % . . % . . . 

b) Based on the contour plot you found in a) estimate the coordinates of two saddle 
points of the function in the region S defined in a).  Mark the points using the Data 
Cursor. 

Exercise 5.3 Suppose . ( , ) sin(3 ) 2cos( )f x y x y x y" & % %

a) Write an M-file that will produce 15 labeled contour curves for  over the 

square 

( , )f x y

1 2( , ) | 0 2,0 2S x y x y" . . . . . 

b) Based on the contour plot you found in a) determine whether the function has any 
critical points in the square S defined in a).  If there are any such points, provide 
estimates from the graph for their x and y coordinates and provide a justification from 
the graph as to whether these are relative maxima, minima or saddle points. Indicate 
your reasons as comments on the M-file and publish the contour plot and the M-file. 
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Exercise 5.4 Write an M-file that uses ezplot to display the graph of  

and the circle , on the same figure.  Your graph should show   

2 42 1x xy y& & "
2 2 1x y& "

a) A graphing window where x and y vary from 1.2%  to 1.2& . 

b) Display of grid lines 

c) The circle displayed in a dotted line style. 

d) A legend displaying the equation of each curve and a title with your name 

e) The curves meet at the points (0, 1)3  and at two other points.  Using the Data Cursor, 
(if available) display labels at the approximate locations of these two other points.  (To 
display multiple data points, right click the data marker box and choose the "Create New 
Datatip" option.)  Otherwise, estimate the coordinates of these additional intersection 
points using the grid lines.  Write your estimate as a comment in your M-file. 

Publish your M-file.  Be sure to include your name. 

Exercise 5.5 Run the M-file below (you can download the file as contourplot.m 
from the course site).  What does the file do?  Explain what is done by each of the shaded 
lines. 

% 3D Contour plotting 
a=-2;b=2; 
c=-2;d=2; 
x=linspace(a,b,25); 
y=linspace(c,d,25); 
[x y] =meshgrid(x,y); 
z=-x.*y.*exp(-x.^2-y.^2); 
clf; 
hold on 
[C h]=contour3(x,y,z,'k');  
set(h,'LineWidth',1.5);   
surf(x,y,z); 
view([1 1 1]); 
grid on 
shading interp  
xlabel('x');ylabel('y');zlabel('z'); 
hold off 
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6: Symbolic and Numerical Calculations

We have touched on symbolic objects earlier in our discussion of the ez-graphing 
techniques, which serve as a parallel plotting world for symbolic users. 

Now we want to consider using Matlab to do symbolic calculations.  We will also 
consider how we do numerical calculations with symbolic expressions.  For example, 
how do we compute a derivative symbolically and then find numerical values of the 
derivative?  We begin first with a discussion of Matlab functions. 

6.1 Matlab Functions 

From the point of view of computing, a function is a structure f that accepts one or more 
inputs and produces one or more outputs.  Matlab has two mechanisms for defining 
functions – the M-file function and the anonymous function.  An M-file function, as the 
name suggests, is a function that is created as a special type of M-file.  The built-in 
Matlab functions are M-functions.  Such functions are saved by the system and can be 
accessed at a later date.  Typically, one uses an M-function when constructing a function 
requires multiple lines of code.  For example, in addition to carrying out its principal 
calculation, one might want the function to check that the user has entered a legal input, 
and if not, issue an error message and not proceed.  In this course, we will not be 
interested in creating such carefully crafted functions so we will have little need to write 
M-file functions.  Instead, we will focus on the more useful anonymous function 
construct. 

6.1.1 Anonymous Functions 

Although, as the name suggests, an anonymous function may indeed be used without 
giving it a name, more commonly we will attach names to these functions.  Here is a very 
simple illustration of the construction. 

Example 6.1: Write a Matlab anonymous function to define 2( )f x x" .  The function 
should be vectorized so it accepts vector inputs and computes the result for each 
component of the vector. 

Solution: 
f=@(x)x.^2   

f =  

    @(x)x.^2   

The symbol @ initiates the definition.  This is followed by a list of the input variables, in 
parentheses, separated by commas if there is more than one variable.  Finally, we state 
the formula defining the function.  If we wish to have the function act component-wise on 
arrays, the dot operator should be included in this formula.  The function has been named 

6.1 
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f.   Note that it is not necessary to declare x as symbolic in order to use it as a placeholder 
for the variable within an anonymous function ! 

Such a function can be used in much the same way you use functions in ordinary 
mathematics, with the added feature of being vectorized.  Thus, if  

x=[1 2 3]   

x = 

     1     2     3   

then entering  

f(x)   

produces the square of each input value. 

ans = 

     1     4     9   

However, if x has not been declared to be symbolic then a request such as 

f(x)   

??? Undefined function or variable 'x'.   

produces an error message. 

We can define functions of more than one variable in a similar fashion. 

6.2 

2Example 6.2: Define an anonymous function 2( , )g x y x y" & .  Vectorize the function 
to accept input arrays. 

Solution:  
g=@(x,y)x.^2+y.^2   

g =  

    @(x,y)x.^2+y.^2   

Then g(1,2)   is  

ans = 

     5   

and if x=[1 2 -1]   and y=[3 2 1]   then  

x = 

     1     2    -1   

y = 

     3     2     1   

and g(x,y)   

ans = 

    10     8     2   

consists of the values  and (1,3), (2, 2)g g ( 1,1)g % . ! 
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6.2 Symbolic Functions 

So far, when using anonmymous functions we did not require that the function variables 
represent symbolic quantities.  When we add that option we obtain symbolic functions, 
which closely resemble ordinary mathematical functions.  Let us first declare a pair of 
symbolic variables. 

syms x y  . 

We can now create symbolic functions of these variables.   

6.3 

2Example 6.3: Define the function 2( , )h x y x y" &  as a symbolic, vectorized function of 
x and y. 

Solution:  
h=@(x,y)x.^2+y.^2   

h =  

    @(x,y)x.^2+y.^2   

Then not only can we compute h(2,3)   

ans = 

    13   

but we can also ask for symbolic quantities, such as h(x,x^2)   

ans = 

x^2+x^4   

An important point to observe, however, is that we must never assign any numeric value 
to the symbolic variables themselves.  Doing so will destroy their symbolic character.  
Thus, if we want to compute the value of h at each pair ( , )x y  from the arrays [ 1, 2, -1] 
and [ 3, 2, 1] we can do so by assigning suitable upper-case letters as names for the input 
arrays.  Remember, Matlab is case-sensitive, so that x and X represent different 
quantities. 

X=[1,2,-1]   and Y=[3,2,1]   

X = 

     1     2    -1   

Y = 

     3     2     1   

Then h(X,Y)   

yields the desired result. 

ans = 

    10     8     2   ! 

6.2.1 Calculus: - Differentiation 
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One purpose in using the Symbolic Toolbox is to have the system perform complicated 
manipulations using its built-in symbolic processing.  A particularly useful feature is 
symbolic differentiation.  Later we will also take up integration.  The diff command, 
which we have briefly encountered in Chapter 1, computes derivatives of a symbolic 
expression. 

Example 6.4:  Find the derivative of sin(2 )y x x" . 

Solution:  Assuming that x has been declared symbolic we proceed as follows: 

y=x.*sin(2*x); diff(y)   

ans = 

sin(2*x)+2*x*cos(2*x)   

Notice that although we started with a vectorized expression, the formula that is returned 
for the derivative is not vectorized.  We can get Matlab to supply the appropriate dot 
operators using the vectorize command. 

vectorize(ans)   

ans = 

sin(2.*x)+2.*x.*cos(2.*x)   

As in this case, the vectorize command usually supplies more dot operators than are 
actually needed. ! 

We can compute higher order derivatives by including an extra parameter in the diff 
function.  

Example 6.5: Compute the 3rd derivative of sin(2 )y x x" . 

Solution:  Add the order of differentiation as a second argument in the diff function. 

diff(y,3)    gives the 3rd derivative. 

ans = 

-12*sin(2*x)-8*x*cos(2*x)   ! 

Notice that the input to diff is an expression, and the command returns an expression as 
output.  Sometimes it is useful to have a derivative function.  This is particulary so when 
we want to make numerical evaluations of the derivative.  We can get Matlab to convert 
the expression for the first derivative generated above, sin(2 ) 2 cos(2 )x x x& , into a 
function, as follows: 

Example 6.6: Construct a derivative function from the symbolic derivative formula. 

Solution:  

Suppose we start with the symbolic function ( ) sin(2 )f x x x" . We want to construct the 
function .  Moreover, both functions should be vectorized.  Here's how to do it. ( )f x$

First let's define . ( )f x

f=@(x)x.*sin(2*x)   

6.4 
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f =  

    @(x)x.*sin(2*x)x 

Then we construct the derivative expression via 

dy=diff(f(x))   

dy = 

sin(2*x)+2*x*cos(2*x)   

Finally, we can create the appropriate derivative function using the subs command. 

df=@(x)subs(dy)   

df =  

    @(x)subs(dy)   

This is a perfectly general method for converting an expression defined through some 
other procedure, in this case as a result of applying the diff function, into an 
anonymous function. 1

When we evaluate the function df, the subs command passes any input values to the 
expression dy.  If we tried to do this construction without the subs command, it would 
not produce the desired result.  (Try it!)  In our case, everything works fine.  For 
example, 

df(x)   

ans = 

sin(2*x)+2*x*cos(2*x)   

returns the expression for the derivative, dy.  Although it does not appear from the latter 
formula that the derivative function df is vectorized, in fact it is. 

df([pi,pi/2])   

ans = 

    6.2832   -3.1416  

returns the numerical value of the derivative at #  and 2
# .  ! 

Everything we have done for functions of a single variable works equally well for 
functions of several variables.  The only extra bookkeeping is that the diff command 
requires that we specify the variable of differentiation.   

Example 6.7: Find 
f

x

4
4

, 
f
y
4
4

, and 
4

2 2

f
y x
4
4 4

 for the function 2 2( , ) sin( )f x y x y" & . 

Solution: Define a symbolic function f of two variables. 

f=@(x,y)sin(x.^2+y.^2);   Then we have  

zx=diff(f(x,y),x)   

                                                 
1 I am grateful to Prof. Peter Brinkmann for this construction.  
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zx = 

2*cos(x^2+y^2)*x   for  and  xz

zy=diff(f(x,y),y)   

zy = 

2*cos(x^2+y^2)*y   for . yz

If we wish to generate (vectorized) partial derivative functions we can do so through 

fx=@(x,y)subs(zx);   

and fy=@(x,y)subs(zy);  . 

Then, for example 

using the arrays X=[1, 2 ,-1]    and Y=[3, 2, 1]  , we get  

X = 

     1     2    -1   

Y = 

     3     2     1   

and we have fx(X,Y)   

ans = 

   -1.6781   -0.5820    0.8323   

The required mixed partial cannot be computed in a single application of the diff 
function.  The latter can only compute derivatives with respect to one variable at a time.  
To compute mixed partials, we use the theorem that says the order of differentiation is 

not important.  Thus, to find 
4

2 2

f
y x
4
4 4

, we first find 
2

2xx

f
z

x
4

"
4

 and then take the second 

partial of this result with respect to y. 

zx2=diff(f(x,y),x,2);   This is the partial . xxz

Then take the second partial of this with respect to y. 

zx2y2=diff(zx2,y,2)   

zx2y2 = 

16*sin(x^2+y^2)*y^2*x^2-8*cos(x^2+y^2)*x^2-8*cos(x^2+y^2)*y^2-

4*sin(x^2+y^2)   ! 

The pretty command can be used to write this last expression in a somewhat more 
legible form, though if mathematically typeset output is desired one must use the latex 
command to convert the expression to the mathematical markup language latex.  The 
latter result can then be printed through a program that generates mathematical 
expressions from such input.  Unfortunately, it is not (yet) possible to include computer 
generated latex output in a published version of an M-file, (you can add explicit latex 
code), but undoubtedly this will be an added feature in a future release. 
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pretty(zx2y2)   

  

          2    2   2  2          2    2   2          2    2   2 
  16 sin(x  + y ) y  x  - 8 cos(x  + y ) x  - 8 cos(x  + y ) y 
 
                  2    2 
         - 4 sin(x  + y )   

6.3 Tangent Planes 

The following M-file uses some of the ideas discussed above to draw the graph of a 
function and its tangent plane at a specified point.  We highlight the lines that use 
material discussed in this section.  The M-file is available as tanplane.m on the course 
website.  One may have to rotate the figure to get a view that shows the tangency to the 
best effect. 

% Surface and tangent plane plot 
% User Input 
a=0; b=1.5; % x interval for plotting 
c=0; d=1.5;  % y interval for plotting 
% grid size parameters 
m=15;  
n=15; 
% x, y coordinates of point of tangency 
X0=1; 
Y0=1; 
%function to plot 
syms x y 
f=@(x,y)sin(x.^2+y.^2);  % anonymous function  
% End user input 
% Begin Matlab computations 
% Construct 1st derivative functions 
zx=diff(f(x,y),x);  
zy=diff(f(x,y),y); 
fx=@(x,y)subs(zx); 
fy=@(x,y)subs(zy); 
% Plot Surface 
clf 
hold on 
X=linspace(a,b,m); % use X, Y, Z for numeric values 
Y=linspace(c,d,n); 
[X Y] = meshgrid(X,Y); 
Z=f(X,Y); 
surf(X,Y,Z); view([1 1 1]); 
% Construct symbolic function for z value on tangent plane  
Z0=f(X0,Y0); 
A=fx(X0,Y0); 
B=fy(X0,Y0); 
z=@(x,y)Z0+A*(x-X0)+B*(y-Y0); 
% Now we plot the tangent plane, but use only the four 
% boundary points of the plotting region to get an 
%uncluttered picture 
X=linspace(a,b,2); 
Y=linspace(c,d,2); 
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[X Y] = meshgrid(X,Y); 
Z=z(X,Y); 
surf(X,Y,Z,'FaceColor','cyan') % adjust the color of the 
%patch 
% The next line marks the point of tangency 
plot3(X0,Y0,Z0, 'or','MarkerSize',2,'MarkerFaceColor','r') 
grid on 
xlabel('x');ylabel('y');zlabel('z');hold off 

 

6.4 Summary 

We summarize the commands used in this section: 

@: - symbol to initiate an anonymous function 

diff: - compute a symbolic derivative or partial derivative (note that diff can also apply 
to arrays and produces the so-called first difference array. This is used in computing 
numerical approximations for derivatives.) 

pretty: - display a symbolic expression in a style that is closer to standard math output. 

subs: - substitutes input values for variables in symbolic expressions.  Useful for 
converting symbolic expressions to (vectorized) anonymous functions. 

vectorize: - inserts dot operands into an expression  

 

6.5 Exercises 

Exercise 6.1  Write an M-file in which you define each of the following functions and 
have Matlab compute the indicated derivative, and the value of the derivative for the 
specified inputs.  Publish the M-file, making sure that you divide the published document 
into cells, each of which produces the answer for a single part.  Do not forget to include 
your name at the top of the file. 

a) :  7 5 4( ) 3 5 3f x x x x" % & & ( )f x$$$  : evaluate at 1:5x " . 

b)  :  sin 2( ) 2 ln( 1)x xf x e x" & & ( )f x$$ : evaluate at : / 4 :x pi pi pi" %   (Note: use 
exp to enter the exponential function and log for the natural logarithm.) 

c) 
2 2

2
( , )

( )
x y

f x y
x y
&

"
&

:  ( , )xyf x y :  evaluate at all pairs 

 (1,1), (2, 2), (3,3), (4, 4), (5,5)

d) 3 2 2 2 2( , , )g x y z x y z x y z" & & & : : evaluate at the eight vertices 

of the cube with coordinates at 

( , , )xyzg x y z

1x " 3 , 1y " 3 , 1z " 3    

Exercise 6.2 Write an M-file in which you define the function 2( ) sin( ) cosf x x" x  and 
have Matlab compute the first two derivatives as functions df and df2.  Using plot, 
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6.9 

]create a graph of the function f and the first two derivatives over the interval [ ,# #% .  
Use different line styles for each plot and a label to distinguish which is which.  You may 
want to truncate the y-axis display to the interval [ 10,10]% .  This can be done using the 
command ylim.  Publish your result, after dividing the M-file into appropriate cells so 
that the output is closely related to the input statements. 

Exercise 6.3 Using the tangent plane M-file above as a model, write an M-file that plots 
the graph of the function ( ) cos(2 )xf x e x%" over the interval [0, ]#  and draws the tangent 

line to the graph at the point with x coordinate 4
# .  Matlab should be used to compute 

the necessary formulas and values for derivatives. 

 



7: Parametric Surfaces 

So far we have examined surfaces defined as the graph of an equation .  
However, there are many interesting surfaces that are not graphs of functions.  For 
example, the sphere given as the set of points satisfying 

( , )z f x y"

2 2 2 1x y z& & " .  This surface 

can be pieced together from its upper and lower hemispheres defined by 2 21z x" % % y  

and 21z x" % % % 2y , respectively.  For the purposes of graphing, however, this 

produces a poor picture because the domain of these functions (the inside of the unit 
circle) is not so easily approximated by a rectangular grid. 

We can generalize the method of representing a surface by introducing the idea of a 
parametic representation.  This is analogous to the parametric description of curves.  
Namely, we say that a surface is given parametrically by the parameters s and t, if there 
are functions f, g, and h of the variables s and t such that any point ( , , )x y z on the surface 
satisfies  

 ( , ) ( , ) ( , )x f s t y g s t z h s t" " " . 

Here s and t vary over some region in the st-plane, usually a rectangle.  We can use this 
representation to generate points ( , , )x y z  on the surface, from which Matlab can 
construct a 3D plot.  Let's consider some examples. 

7.1 Basic Examples 

Example 7.1:  Plot the circular cylinder 2 2 1x y& " .   

Solution: We use the /  and z variables of a cylindrical coordinate system for the 
parametric representation.  Namely, on the surface of the cylinder we can take  

 cos sinx y z z/ /" " "  

where 0 2/ #. .  and , (for example).  To plot, we set up a meshgrid in the 0 z. . 3 / , z 
variables and determine the x, y, and z values from the above equations.  Let's see how it 
is done.   For simplicity, we will use t instead of / , 

t=linspace(0,2*pi,20); 

z=linspace(0,3,20); 

[t,z]=meshgrid(t,z);   

Now we compute the values of x, y, and z corresponding to the values of t and z in the 
grid.  Since , we do not have to do any additional computation to compute these 
values.  Once we have the data values for the points on the surface, we are in business 
and can use the surf command as usual. 

z z"

x=cos(t); y=sin(t); 

surf(x,y,z) 

grid on; view([1 1 1]); 

T7.1 
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xlabel('x');ylabel('y'),zlabel('z');   

 

 

 ! 

In generic terms the curves we see on a parametric surface plot are the images on the 
surface of the grid lines in the s, t-plane where s or t is constant.  For example, in the plot 
above, the circles are curves on which z is constant, while the vertical lines are curves on 
which /  (i.e. t in our notation) is constant.   

We can carry out similar constructions for cylinders parallel to the other axes.  For 
example, to plot the cylinder , use the parametric equations 2 2 1x z& " cosx t" , sinz t"  
and y y" , with 0 2t #. .  and a y b. . , for some interval [ , . ]a b

Plotting cylinders evidently depends on being able to parametrize the trace curve that 
defines the cylindrical cross-section.  Here are some additional commonly occurring 
examples: 

Parabolic cylinder: :  Use x and z as parameters.  The equations are , 

, , with  and 

2y x" x x"
2y x" z z" a x b. . c z d. . .  We have actually used this construction 

earlier in Exercise 5.5 

Elliptic Cylinder: 
2 2

1
9 16
x y
& " .  Here we can let 3cosx t"  and 4siny t" , while z z"  

is the other parameter.  The range of the variables is 0 2t #. .  and c z d. . . 

Example 7.2: Surface of Revolution.  Describe parametric equations for the surface of 
revolution obtained by revolving a curve in the x, z plane around the z-axis.  Apply the 
method to plotting a cone. 

Solution: The cylinder in Example 7.1 is obtained by rotating around the z-axis the 
straight line  in the xz-plane.  More generally, we can rotate around the z-axis any 
curve with equation 

1x "
( )x f z"  in the xz-plane.  The resulting surface can be described 
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using the angle of rotation t  and the z coordinate as parameters.  In fact, the general 
equations are  

7.3 

 ( ) cos ( ) sinx f z t y f z t z z" " " . 

For example, if we take the line x z"  and rotate it around the z-axis we obtain a cone.  
This can be described by the parametric equations 

 cos sinx z t y z t z" " z"

2

. 

This description is also clear from the rectangular equation of the cone, namely 
.  A Matlab plot using a meshgrid in the t, z-plane gives: 2 2z x y" &

t=linspace(0,2*pi,20);z=linspace(0,3,20); 

[t z]=meshgrid(t,z); 

x=z.*cos(t);y=z.*sin(t); 

surf(x,y,z); grid on; view([1 1 1]);   

 

 

 ! 

Example 7.3: Parametrize a sphere and use the parametrization to plot the sphere. 

Solution:  The parametrization can be obtained using spherical coordinates.  For 
example, to plot  use the equations 2 2 2 4x y z& & "

 2cos sin 2sin sin 2cosx t s y t s z" " " s  

For simplicity in typing, we have identified t with /  and s with 5  in the usual notation.  
Thus, for the full sphere we would let 0 2t #. .  and 0 s #. . .  To plot the upper 

hemisphere we would restrict s to the interval 0 2s #. . .  The Matlab plot is: 

t=linspace(0,2*pi,20);s=linspace(0,pi/2,20); 

[s t]=meshgrid(s,t); 
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x=2*cos(t).*sin(s);  y=2*sin(t).*sin(s);  z=2*cos(s); 

surf(x,y,z); view([1 1 1]); grid on; 

xlabel('x');ylabel('y');zlabel('z'); 

axis equal   

The last command simply draws the sphere without distorting distances, so the 
appearance is actually spherical, instead of egg-shaped. 

 

 ! 

Example 7.4:  Draw a plot of two concentric spheres with the outer sphere rendered as 
semi-transparent. 

Solution: Using hold on we can easily create plots showing multiple surfaces.  To 
assist our visualization it is sometimes useful to adjust the transparency of one of the 
surfaces.  This is done with the property FaceAlpha.  This takes a numeric value between 
0 and 1, with a value of 1 signifying an opaque surface (the default) and a value of 0 
denoting a completely clear surface.  Observe the effect of using this command in the 
following figure, which shows the hemisphere of radius one inside the hemisphere of 
radius two.  The latter has been drawn as a semi-transparent surface.   

% Hemisphere of radius two 

clf; hold on; 

t=linspace(0,2*pi,20);s=linspace(0,pi/2,20); 

[s t]=meshgrid(s,t); 

x=2*cos(t).*sin(s);  y=2*sin(t).*sin(s);  z=2*cos(s); 

surf(x,y,z, 'FaceAlpha',.5); 

view([1 1 1]); grid on; 

xlabel('x');ylabel('y');zlabel('z'); 

% Hemisphere of radius one 

7.4 

t=linspace(0,2*pi,20);s=linspace(0,pi/2,20); 
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[s t]=meshgrid(s,t); 

x=cos(t).*sin(s);  y=sin(t).*sin(s);  z=cos(s); 

surf(x,y,z); 

axis equal; 

hold off  

 

 ! 

7.2 Built-in Parametric Plotting 

By way of completeness, we mention that Matlab has commands for doing some of the 
parametric plots described above.   

Example 7.5: Use the sphere command to draw spheres of radius one centered at the 
origin and at the point (1,0,0). 

Solution: The command sphere generates a plot of a sphere of radius one centered at 
the origin.  Thus 

sphere; axis equal   
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The second sphere, with its center shifted along the x-axis, can be obtained from the first 
by translating all points on the latter sphere by the vector 1 0 0"v .  In order to do 

this, we first need to generate those data points.  We can obtain the points by assigning 
variables [ , , ]x y z  as the output of the sphere command.  Then we add 1 to the x 
coordinates of these points, leaving the others fixed.  The following code will implement 
this and draw the new graph, together with the sphere generated above. 

clf; hold on; 

[x y z]=sphere; 

surf(x,y,z)   % plots sphere centered at the origin 

x=x+1;  % translates the x-coordinates 

surf(x,y,z);  % plots translated sphere 

axis equal; hold off; 

grid on; view([1 1 1]); 

xlabel('x');ylabel('y');zlabel('z'); 
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 ! 

7.3 Summary 

We showed how to construct surface plots based on the parametric representation of a 
surface.  Matlab contains some built-in parametric plotters, of which we discussed in 
detail the sphere command.  Other parametric plotters are the ellipsoid command 
and the cylinder command.   The latter can be used to construct surfaces of revolution 
whose rotation axis is the z axis.  Geometric transformations are needed if you wish to 
use this command to plot cylindrical surfaces with other axes of rotation. 

7.4 Exercises 

All exercises should be done by writing appropriate M-files and publishing the results. 

Exercise 7.1 Plot the portion of the parabolic cylinder 24z x" %  that lies in the first 
octant with .  (Use parameters x and y.  Determine the range of values for x to 
only plot points in the first octant.) 

0 y. . 4

Exercise 7.2 Rotate the curve 1 cosx z" & , for 0 2z #. . , around the z-axis.  Use 
Matlab to draw the surface of revolution.  Use axis equal if necessary for a non-
distorted view. 

Exercise 7.3 Draw the portion of the cone 2 2y x z2" &  for 0 y 3. . .  (This is obtained 
by rotating the line  around the y-axis.  Use the angle of rotation t and the y variable 
as parameters.) 

z y"

Exercise 7.4 Draw the ellipsoid whose equation is 
2 2 2

1
4 16 2
x y z
& & "  in two ways.  
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a) Using explicit parametric equations base on spherical coordinates. (Observe: The 

quantities 2
xx$ " , 4

yy$ " , and 
2

zz$ "  satisfy the equation 2 2 2( ) ( ) ( ) 1x y z$ $ $& & " .  

Use spherical coordinates for , ,x y$ $  and z$  to parametrize the latter surface.)  Use axis 
equal to obtain a non-distorted view. 

b) Using the built-in function ellipsoid. 

Exercise 7.5 The circle of radius one with center  in the x, z-plane has parametric 
equations , , 

(2,0,0)
2 cosx t" & 0y " sinz t" , where 0 2t #. . .  If we revolve that circle 

around the z-axis we obtain a donut-shaped figure called a torus.  Letting s denote the 
angle of rotation about the z-axis show that the parametric equations of this surface are 

 (2 cos ) cos (2 cos )sin sinx t s y t s z" & " & " t , 

where 0 2t #. .  and 0 2s #. . .  Using Matlab, draw the surface. (N.B. Use axis 
equal to obtain a non-distorted view.) 

Exercise 7.6 Create a single plot showing the cylinders 2 2 1x z& "  and  within 
the box where , , and 

2 2 1y z& "
2 2x% . . 2 y% . . 2 22 z% . . .  Later we will compute the 

volume enclosed by the two cylinders.  Make one cylinder semi-transparent using the 
FaceAlpha property. 

Exercise 7.7 Create a single plot showing the portion of the parabolic cylinder  
that lies in the first octant with 

24z x" %
0 y 3. . , (see Exercise 7.1) and the first octant portion of 

the vertical plane y x" , with 0 .  Draw the plane with a single patch using a 
'FaceColor' of 'cyan'.  Make the cylinder semi-transparent so you can see the vertical 
plane inside the cylinder. 

4z. .

Exercise 7.8 Create a single plot that shows the sphere 2 2 2 4x y z& & "  and the cylinder 

.  Use axis equal to obtain a non-distorted view.  Make the sphere 
semi-transparent so you can see the cylinder inside of it. 

2 2( 1)x y% & "1
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8: Field Plots 
 

8.1 Vector Field Plots 

A function  of two variables assigns a scalar to each pair ( ,( , )f x y )x y .  Sometimes, we 
need to consider a function that assigns a vector to each point ( , )x y .  For example, if we 
have a fluid flowing through some region (in the plane), at any time we can measure the 
velocity vector of the fluid at the point ( , )x y .  This assigns a vector to the point.  We call 
such an assignment a vector field.  We can visualize a vector field by plotting a small 
arrow in the direction of the vector, but with its initial point based at the point ( , )x y .  
The matlab command quiver allows us to create such displays. 

Example 8.1: Suppose a velocity field is given by ( , ) ,x y y x" %v .  Use the quiver 

command to plot the field. 

Solution:  First, let's make sure we understand what we are trying to do.  For example, 
the field associates with the point (1,1) the vector (1,1) 1, 1" % " %v i j .  We want to 

plot this vector with initial point (1 .   Of course, this vector has length ,1) 2  and plotting 
lots of such vectors at their actual scale would quickly produce an unintelligible mess.  
Instead, Matlab scales the vectors (without changing their directions) so that the vectors 
that are drawn do not overlap.  That's what quiver does for us. 

To use the command, we define a grid of points ( , )x y  in some rectangle on which we 
want to plot the vector field.  This grid is constructed as we have done for plotting 
surfaces.  Then we compute the components of the vector field at the grid points and pass 
this to the quiver command.  We illustrate with the vector field v. 

x=linspace(-3,3,15);y=x; 

[x y]=meshgrid(x,y); 

vx=y; vy=-x;  % compute components of the vector field 

quiver(x,y,vx,vy)   
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In this case it would seem that the fluid is flowing clockwise around the origin, which 
may not have been so obvious from just looking at the formula for v.  ! 

8.2 Gradient Plots 

8.2.1 2D Gradient Fields 

The gradient of a function  provides us with an important example of a vector 

field.  This field is given by

( , )f x y

x yf f f6 " .  We can illustrate some of the principle 

geometric properties of the gradient using the quiver command.  For one, the gradient 
is orthogonal to the level curves of f, i.e. the curves defined by .  We can 
illustrate this by plotting a contour plot and then superimposing the quiver plot on this.  
Let's do this for the simple case of 

( , )f x y c"

2( , ) 2f x y x y" & , whose contour lines (level curves) 
are concentric circles around the origin. 

Example 8.2: Draw a gradient field plot of the function 2( , ) 2f x y x y" &  in the square 
defined by  and . 5 5x% . . 5 5y% . .

Solution: 

x=linspace(-5,5,25);y=x; 

[x y]=meshgrid(x,y); 

z=x.^2+y.^2; 

clf; hold on; 

contour(x,y,z); 

vx=2*x; vy=2*y;  % define components of gradient 

quiver(x,y,vx,vy); 
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axis equal;  % useful for depicting orthog relationship 

xlabel('x'); ylabel('y');   
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The gradient field is clearly perpendicular to the level curves.  Moreover, as we approach 
the origin, the gradients become progressively shorter, until the gradient vanishes at the 

.  This simply says that (0,0) 0xf "  and 0yf "  so the point ( , ) (0,0)x y "  is a critical 

point of f.   ! 

8.2.2 3D Gradient Fields 

For a function  of three variables, the gradient ( , , )F x y z F6  is perpendicular to the level 
surface .  We can plot such a level surface (often using parametric plotting) 
and generate a vector field of normals from the gradient.  The command quiver3 
allows us to visualize the normal field.  We illustrate with two examples: 

( , , )F x y z c"

Example 8.3: Draw the surface 2z x y2" &  over the rectangle 2 2x% . . ,  and 
display the surface normals. 

2 2y% . .

Solution:  We can write the equation of the surface as 2 2( , , ) 0F x y z x y z" & % " , so that 

the normal has components 2 2 1x y %  (This also follows from our earlier work on 

the tangent plane to surfaces given by ( , )z f x y" .)  We compute the x , y, and z 
coordinates of points on the surface and then compute the components of the vector field 
from this formula. 

x=linspace(-2,2,20); y=x; 

[ x y] =meshgrid(x,y); 
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z=x.^2+y.^2; 

vx=2*x; vy=2*y; vz=-1;  % the z-component is constant 

clf; hold on; 

surf(x,y,z); 

shading interp  % removes grid lines from the surface 

quiver3(x,y,z, vx,vy,vz, 'k');  % black arrows 

view([1 1 1]) 

grid on;   

 

   ! 

Example 8.4:  Draw the sphere 2 2 2 1x y z& & "  with the normal vectors (a "hairy" 
sphere).   

Solution: This time we use spherical coordinates (See Chapter 7) to give a parametric 
representation of the sphere. 

u=linspace(0,2*pi,20); v=linspace(0,pi,20); 

[u v]=meshgrid(u,v); 

x=cos(u).*sin(v); 

y=sin(u).*sin(v); 

z=cos(v); 

vx=2*x; vy=2*y;vz=2*z; % gradient components 

clf; hold on; 

surf(x,y,z); 

shading interp; 
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quiver3(x,y,z,vx,vy,vz,'k'); 

view([1 1 1]) 

grid on   

 

   ! 

8.3 Summary 

quiver:  quiver(x, y, vx, vy) draws vectors given by ,vx vy  with initial point 

( , )x y .  Lengths of vectors are scaled to avoid overlapping. 

quiver3:  quiver3(x,y,z,vx,vy,vz) draws vectors given by , ,vx vy vz  at the 

point ( , , )x y z .  Vector lengths are scaled to avoid overlapping. 

shading interp:  removes gird lines from surface plot, leaving color scheme intact.   

8.4 Exercises 

Exercise 8.1  Using contour, plot at least 10 level curves of the function 
2( , ) 2f x y x y" %  on the rectangle 3 3x% . .  and 3 y 3% . . .  Add a plot of the gradient 

field to the plot of the level curves.  Make sure you adjust the scales using axis equal 
to preserve orthogonality. Publish your M-file with the graphic output. 

Exercise 8.2 Using the parametric representation cosh( )x t" , sinh( )y t" , plot the curve 

.  Include portions of both branches of this hyperbola.  Then add the normal 
vectors to the plot of the curve. (Your plot should only show arrows attached to the 
hyperbola, not covering a 2D region.)  Make sure you adjust the scales using axis 
equal to preserve orthogonality.  Publish your M-file, including the graphic output. 

2 2 1x y% "

8.5 
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Exercise 8.3 Plot the surface 2 2 23 4x y z 9& & "  by parametrizing it (see Chapter 7 on 
parametric plotting for how to do this using spherical coordinates).  On the same graph 
plot the normal vector field to this surface.  Make sure you adjust the scales using axis 
equal to preserve orthogonality. Publish your M-file, including graphic output. 

Exercise 8.4 Recreate the picture in Example 8.4 but using the sphere command to 
generate the points on the sphere. 

Exercise 8.5 Matlab has a gradient command that approximates a gradient 
numerically.  Look up how to use the command and then use it to generate the output in 
Example 8.3  

8.6 



9: Integration 
 

9.1 Single Variable Integration 

9.1.1 Symbolic Integration 

If the Symbolic Toolbox is available, Matlab can calculate exact values of definite or 
indefinite integrals, as you learned to do in calculus II.  For example, suppose we want to 

find sinx x dx7  (i.e. the antiderivative) and 4

0
sinx x dx

#

7 .  We first declare x a symbolic 

variable. 

syms x   

Example 9.1: (Indefinite Integral) Find sinx x dx7  

Solution:  
int(x*sin(x))   

ans = 

sin(x)-x*cos(x)   

Matlab returns a specific antiderivative, without a constant of integration.   ! 

Example 9.2: (Definite Integral) Find 4

0
sinx x dx

#

7 . 

Solution: 
int(x*sin(x),0,pi/4)   

ans = 

1/2*2^(1/2)-1/8*pi*2^(1/2)   

In more traditional form we would write this as 1 1
2 82 #% 2 .  If we wish a numerical 

value we can use the double command. 

double(ans)   

ans = 

    0.1517   ! 

If you defined a symbolic function f (either anonymously or in an M-function) and you 
wish to find ( )f x dx7  you do not have to retype the expression  inside the int 

command.  Just enter int(f(x)).   For example, we have 

( )f x

f=@(x)x*sin(x); 

int(f(x))   

yielding 

9.1 
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ans = 

sin(x)-x*cos(x)   

 

9.1.2 Numerical Integration 

Matlab's ability to perform single variable symbolic integration is impressive.  It can 
obtain answers to integration problems that are beyond the scope of elementary calculus. 

For example, the result of  

int(1/sqrt(1+x^2))   

ans = 

asinh(x)   

may at least be familiar to you (it is the inverse hyperbolic sine function).  But the answer 
to  

int(1/sqrt(1+x^4))   

ans = 

1/(1/2*2^(1/2)+1/2*i*2^(1/2))*(1-
i*x^2)^(1/2)*(1+i*x^2)^(1/2)/(1+x^4)^(1/2)*EllipticF(x*(1/2*2^(1/2)+1/2*
i*2^(1/2)),i)   

is certainly baffling, as it involves complex numbers (the i terms), as well as a new 
function EllipticF.  There are a host of such special functions which arise in many 
advanced analytical problems.  They are built into Matlab, much as sine and cosine, and 
Matlab uses them when theory indicates they are relevant. 

Of course, even these special functions may fail to provide an answer to a problem.  For 
example, 

Example 9.3:  Use Matlab to evaluate 1 log x dx&7 .  

Solution: 
int(sqrt(1+log(x)))   

Warning: Explicit integral could not be found. 

> In sym.int at 58 

ans = 

int((1+log(x))^(1/2),x)   ! 

In this case, Matlab gives up and issues a warning that it could not solve your problem. 

What do you do if you want to compute 
2

1
1 log x dx&7 ? (Recall that in Matlab the 

natural logarithm is written as lo , not ln.) g

9.2 

Fortunately, Matlab has a very precise numerical integration routine based on Simpson's 
Rule, which you learned about in calculus II.  We won't go into the details of the method.  
The command is called quad, which is short for quadrature, a somewhat obsolete term 
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used for integration.  The quad command works slightly differently than int.  Instead 
of entering the expression that you want to integrate, it expects that you enter a handle to 
a function defining the expression.  Moreover, your function needs to be vectorized, i.e. it 
must use "dot" operations or built-in functions such as sin, sqrt, etc, that are 
automatically vectorized.  

Example 9.4: Use the quad command to evaluate 
4

0
sinx x dx

#

7 . 

Solution: 
quad(@(x)x.*sin(x),0,pi/4)   

 

ans = 

    0.1517   

Of course, this agrees with the earlier result found using int.  ! 

In this example, we entered the function anonymously into the command.  We can also 
first define the function using the @ construction. In that case, we simply pass the name 
of the function to the quad command (not the value  as we did for int).  We can 
now numerically integrate the example that had stymied the symbolic processor. 

( )f x

Example 9.5: Use the quad command to evaluate 
2

1
1 log x dx&7 . 

Solution: 
g=@(x)sqrt(1+log(x)); 

quad(g,1,2)   

ans = 

    1.1743   ! 

In general, we would expect Matlab's numerical answer to be reliable.  Nonetheless, it is 
a good idea to check things when you can do so.  For example, we can try to perform a 
symbolic integration and, assuming Matlab can carry it out, compute a numerical 
approximation from the latter.  If there are discrepancies, we will have to investigate 
more deeply to figure out which answer, if any, is correct.  This may not be easy, but one 
way to do so is to write your own simple routine that gives an approximate answer.  In 
the case of integration, we can use the simple scheme of mid-point Riemann sums.  This 
works as follows 

Mid-point Riemann Sums to approximate ( )
b

a
f x dx7 , 

a) Select a whole number n. 
b) Divide the interval of integration [ ,  into n equal subintervals each of length ]a b

b a
dx

n

%
" . 

9.3 
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c) Compute the mid-point of each subinterval.  These are the n points 1 2

dx
x a" & , 

2 1x x dx" & , 1, n nx x d%" &! x .  The last point will be
2

dx
b % .  

d) Compute the Riemann Sum  

1 2 1 2( ) ( ) ( ) ( ( ) ( ) ( ))n nf x dx f x dx f x dx f x f x f x dx& & & " & & &" "  

e) The latter sum will approach  as n increases.  ( )
b

a
f x dx7

It is very easy to implement these steps as an M-file. We do this for the function 
( ) 1 logf x " & x .  The following code has been saved as the M-file midpoint.m and 

the reader can modify it for use with a different example. 

Example 9.6:  Compute the Mid-Point Riemann Sum Approximation to 
2

1
1 log xdx&7  

Solution: 
f=@(x)sqrt(1+log(x));  % function should be vectorized 

a=1; b=2;  % interval of integration 

n=20;  % number of subintervals.  

% The rest of the code just implements the method. 

dx=(b-a)/n; 

x=a+dx/2:dx:b-dx/2;  % generate the midpoints 

y=f(x);  % compute the function values at the midpoints 

RS=sum(y)*dx  % sum command adds the entries in the vector y   

 

RS = 

    1.1744 !   

This is in sufficient agreement with the earlier result for us to accept the latter.  If we had 
selected a larger number of subintervals we would have, in theory, seen closer agreement. 
In practice, using an extremely large a number of subintervals may introduce rounding 
errors that will degrade the theoretical accuracy of the method.  This is more of a concern 
in multivariate integration. 

9.2 Multiple Integration 

9.2.1 Symbolic Double Integration 

The int command can be nested to carry out iterated symbolic double integration.  
Matlab's graphing facilities may be able to assist you in visualizing the region of 
integration in order to set up the double integral.  However, we assume at this point that 
you have formulated an iterated double integral to solve your problem.  Let's do some 
examples illustrating how to do the integration.  First we declare both x and y symbolic 
variables. 

9.4 
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syms x y   

Example 9.7: Compute 
1 2 2 2

0 0
x y dxdy&7 7  (Integration over a rectangle) 

Solution: To avoid excessive parentheses, we prefer to do the inner integral separately 
and then pass the result to the outer integral.  

inner=int(x^2+y^2,x,0,2) % we must specify the variable of integration x 

int(inner,0,1) % the variable of integration now defaults to the 
remaining variable.   

inner = 

8/3+2*y^2 

ans = 

10/3  

We could have suppressed the display of the inner integral.  For those who prefer, the 
entire calculation can be entered in one line as  

int(int(x^2+y^2,x,0,2),0,1)   

ans = 

10/3   ! 

If the region of integration is not a rectangle, we may enter appropriate formulas for the 
boundaries. 

Example 9.8: Evaluate 
1 2 2

0 0

x
x y dydx&7 7  

Solution: 
inner=int(x^2+y^2,y,0,x); int(inner,0,1)   

ans = 

1/3   ! 

9.2.2 Numeric Double Integration 

It is much more common that a symbolic integration package will fail to evaluate a 
double integral because of the increased complexity arising after the initial integration.  It 
is therefore desirable to have a method for approximating such integrals numerically.  
Matlab has a procedure dblquad for doing this.  This procedure works well for 
rectangular regions of integration, provided the integrand is continuous on the domain, 
including along the boundary.  With some tweaking it is possible to use it on non-
rectangular domains, but the results are often unreliable.  We therefore do not 
recommend its use.  In the next section we describe an alternative procedure called 
quadvec, which is not part of the Matlab system but has been developed by the 
Mathworks, works quite well, and can easily be extended to do numeric triple and higher 
order integrations, at least in principle. 

9.5 
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As with quad, the dblquad command expects its function input to be the handle of a 
Matlab function.  Moreover, this function must accept vectorized inputs. 

Example 9.9: Evaluate 
1 2 2 2

0 0
x y dxdy&7 7  using dblquad. 

Solution: 
f=@(x,y)x.^2+y.^2;  %define anonymous function.  Note the . operations. 

dblquad(f,0,2,0,1)  % first give x-limits, then y-limits   

 

ans = 

    3.3333   

To the displayed precision, this agrees with the exact answer 10/3 computed above. ! 

We can also do a quick check on the accuracy of this result by creating our own Riemann 
Sum approximation.  This is similar to what we did above in the single variable case.  We 
generate a 2D grid of midpoints and evaluate the function at each grid point.  These 
values are summed and the result multiplied by dx  to produce a Riemann Sum 
approximation to the double integral.  The only unexpected revision in the code is that to 
sum all the entries in a 2D array (matrix) we have to apply the sum command twice.  On 
a 2D array, the sum command simply adds all entries in each column.  We then apply the 
command again to add those entries.  For example, 

dy

A=[1 2; 3 4]  % enters a 2 x 2 matrix   

A = 

     1     2 

     3     4   

sum(A)  % sums entries in each column   

ans = 

     4     6   

sum(ans)  % sums the entries in the last vector, thus giving total for A   

ans = 

    10   

sum(sum(A))  % this sums all entries in A.  Notice the similarity to 
using a double integral.   

ans = 

    10   

Example 9.10:  Construct an M-file to find a mid-point Riemann sum approximation to a 
double integral (over a rectangle). (This file is available as dblmidpoint.m.) 

Solution: 
 

f=@(x,y)x.^2+y.^2;  % function should be vectorized 
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a=0; b=2;  % x axis limits of integration 

c=0; d=1;  % y axis limits of integration 

m=20;  % number of x-subintervals. 

n=20; % number of y-subintervals 

% The rest of the code implements the method. 

dx=(b-a)/m; dy=(d-c)/n; 

x=a+dx/2:dx:b-dx/2;  % generate the x-midpoints 

y=c+dy/2:dy:d-dy/2;  % generate the y-midpoints 

[x y]=meshgrid(x,y); % 2D array of grid coordinates of midpoints 

z=f(x,y);  % compute the function values at the midpoints 

RS = sum(sum(z))*dx*dy   

 

RS = 

    3.3312   

The answer only agrees to the second decimal place with the more precise value using 

dblquad.  Using a larger number of subintervals will produce closer agreement. ! 

9.2.3 Alternative Numeric Double Integration 

The dblquad command is awkward to use with non-rectangular domains and often 
suffers from a lack of accuracy on such domains.  One might think that nested quad 
commands could be used to numerically evaluate a double integral, much as nested int 
commands can be used to symbolically evaluate double integrals.  Let's see what happens 

when we try to carry out such a plan.  We consider 
1 2 2 2

0 0
x y dxdy&7 7 .  First we define a 

numeric inner integral by entering 

inner=@(y)quad(@(x)x.^2+y.^2,0,2)  % computes a function that gives the 
numeric value of the inner integral for any value y of outer integration  

 

inner =  

    @(y)quad(@(x)x.^2+y.^2,0,2)   

We can evaluate such a function in the usual way.  For example, 

inner(1.5)   

 

ans = 

    7.1667   
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This is just 
2 2 2

0
( (1.5) )x dx&7 .  The inner function passes the value  to the 

integrand in quad and then quad performs a numerical integration.  Note, however, that 
the function inner is not vectorized.  If we ask 

1.5y "

inner([1, 1.5])   

 

??? Error using ==> plus 
Matrix dimensions must agree. 
Error in ==> @(x)x.^2+y.^2 
Error in ==> quad at 63 
y = f(x, varargin{:}); 
Error in ==> @(y)quad(@(x)x.^2+y.^2,0,2)   
 

we get a series of error messages.  Why is this important?  Because, if we want to 
integrate the inner function using quad (to complete the double integral) we must 
supply the function handle of a vectorized function and inner is not vectorized.  Thus, 
writing  

quad(inner, 0,1)   

 

??? Error using ==> plus 
Matrix dimensions must agree. 
Error in ==> @(x)x.^2+y.^2 
Error in ==> quad>quadstep at 118 
y = f(x, varargin{:});  
Error in ==> quad at 78 
... 
 

produces a similar collection of error messages. 

The M-function quadvec uses the quad function (actually a more precise version 
known as quadl), but automatically vectorizes the input function you give it.  This 
allows us to plug in function handles of non-vectorized functions and quadvec will 
vectorize them before passing them to the quad function.  Assuming quadvec is in the 

path accessed by Matlab we can then compute 
1 2 2 2

0 0
x y dxdy&7 7  as follows. 

Example 9.11: Compute the value of  
1 2 2 2

0 0
x y dxdy&7 7  using the routine quadvec. 

Solution: 
inner=@(y)quadvec(@(x)x^2+y^2,0,2); 

quadvec(inner,0,1)   

 

ans = 

    3.3333   
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Notice that we did not have to vectorize even the initial function expressions, because 
quadvec automatically takes care of that.  Naturally, we can write the entire expression 
as a nested function, though the parentheses get rather thick.  The @ designations in 
effect serve to indicate the variable of integration in each part. 

quadvec(@(y)quadvec(@(x)x^2+y^2,0,2),0,1)   

 

ans = 

    3.3333   ! 

One additional advantage of this command is that it allows us to easily carry out numeric 
integrations over non-rectangular regions.   

Example 9.12: Evaluate 
21 1 2 2

0 0

x
x y dydx

%
&7 7  numerically using quadvec. 

Solution: 
inner = @(x)quadvec(@(y)x^2+y^2,0,sqrt(1-x^2)); 

quadvec(inner,0,1)   

 

Warning: Minimum step size reached; singularity possible. 
> In quadl at 95 
  In quadvec at 22 
  In @(x)quadvec(@(y)x^2+y^2,0,sqrt(1-x^2)) 
  In quadvec>g at 26 
  In quadl at 64 
  In quadvec at 22 
ans = 

    0.3927   

 

Although the command issued a number of warnings, it did produce the correct numerical 
value, (to the default tolerance of 610% ), as we can verify in this case using symbolic 
integration: 

syms x y; 

int(int(x^2+y^2,y,0,sqrt(1-x^2)),0,1); 

double(ans)   

 

ans = 

0.3927 ! 

9.2.4 Triple Integrals 

Much of what we have said extends to triple integrals.  We can nest the int function to 
duplicate the computation of iterated triple integrals.  Similarly we can iterate quadvec 
to handle examples that can only be done numerically.  We demonstrate both methods by 

9.9 
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computing a common integral.  We do not recommend the built-in routine 
triplequad, unless you need to compute a triple integral over a rectangular box with 
sides parallel to the coordinate planes.   

Example 9.13:  Find the exact value of  using the int command. 
21

0 0 0

z y yze dxdydz%7 7 7
Solution: We need to create three symbolic variables.  Then we use int to carry out the 
successive integrations.  We show the intermediate steps so the reader can compare the 
computation with the standard evaluation done by hand. 

syms x y z 

intx=int(z*exp(-y^2),x,0,y) 

inty=int(intx, y, 0, z) 

int(inty, 0, 1) 

double(ans)  % convert to numeric answer   

 

intx = 

z*exp(-y^2)*y 

inty = 

-1/2*z*exp(-z^2)+1/2*z 

ans = 

1/4*exp(-1) 

ans = 

    0.0920  ! 

Now we repeat the calculation using quadvec.  The steps are very similar to those 
displayed above, except we pass function handles at each call of the quadvec function. 

Example 9.14:  Approximate the value of  using the quadvec 

command. 

21

0 0 0

z y yze dxdydz%7 7 7

Solution: 

The computation generates many warnings, similar to those displayed above in Example 
9.12.  In order not to fill the page with these warnings, we suppress that part of the 
output. 

warning off all;  %turn off warnings 

f=@(x,y,z)z*exp(-y^2); 

intyz=@(y,z)quadvec(@(x)f(x,y,z),0,y);  

intz=@(z)quadvec(@(y)intyz(y,z), 0, z); 

quadvec(intz,0,1) 

warning on  % turn on warnings at exit   
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ans = 

    0.0920   

This agrees with the result obtained earlier using symbolic iterated triple integrals.  

Notice that whenever the integrand involves more than one variable, we have to create a 
function handle from this integrand that only involves the single variable that we wish to 
integrate.  Thus, the @variable symbol at each stage serves as a reminder of the 
corresponding dvariable in the traditional integral.  We could have done this at the end as 
well, writing quadvec(@(z)intz(z),0,1), though it is superfluous at that stage.! 

9.3 Summary 

We discussed both numerical and symbolic single and multiple integrals.  We used the 
following built-in Matlab functions: 

int:  computes symbolic integrals; can be nested to do multiple integrals.  Input must be 
a symbolic expression. 

double:  converts an exact (symbolic) value to double precision floating point ( 
decimal). 

quad: single variable numeric integration.  Input must be the handle to a vectorized 
function of a single variable.  Cannot be nested to do multiple numeric integration. 

dblquad : double integral numeric integration. Input must be the handle to a vectorized 
function of two variables.  Cannot be applied directly to non-rectangular domains. See 
also triplequad for triple integrals over 3D boxes. 

In addition, we discussed several M-files as enhancements or checks on the system files.  

midpoint: implements midpoint Riemann sum approximation to a single integral 

dblmidpoint: implements midpoint Riemann sum approximation to a double integral 
over a rectangle. 

quadvec: vectorizing numerical integrator.  Can be used for multivariate numeric 
integration. 

9.4 Exercises 

Exercise 9.1:  Let R be the region in the plane bounded by 2y x" , 0y " , and .  Set 

up an iterated double integral to evaluate 

1x "
y
x

R

e dA77 . 

Your work should produce a single M-file that gives the following output: 

a) Uses Matlab's symbolics to find the exact value of the double integral. 

b) Uses quadvec to obtain a numerical estimate for the double integral. 

Publish your work to html.  
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Note: In publishing your work, insert cell dividers after each output that you want 
displayed.  This way the output will appear directly after the input that generates it, rather 
than having all the output at the end, where one can't tell what it goes with.  See the Cell 
menu for the command to enter a cell divider.   

Exercise 9.2: Using Matlab write an M-file that does the following: 

a) Draws the region R between the curves 
2 3

3 2(1 )y x" %  and 1y x" %  for . 0 1x. .

b) Assuming the region R (in 9.2a) is a plane lamina of density 1, finds its exact mass 
using symbolic double integrals.  Convert to a numerical value using double. 

c) Use the quadvec command to confirm the answer in b) by numerical calculation. 

d) Uses Matlab to find the exact expressions for the moments of the region R about the x 
and y axes. 

e) Using d) and either the answer to b) or c) find a numerical approximation to the 
coordinates of the center of mass of R.  (N.B. The symmetry of the region suggests that 
you should find x y" .) 

Publish your M-file in html.  Make sure you indicate by suitable comments what you are 
calculating in each part.  Also, see the note in Exercise 9.1 concerning separation of the 
output when you publish the M-file. 

Exercise 9.3  A solid hemisphere defined by 2 2 20 1x y z. & & . 0z 8 and  has a density 

given by 2 2 2x y z9 " & & . 

a) Set up a triple integral in spherical coordinates to find the mass of the hemisphere.  Use 
Matlab to evaluate the iterated triple integral. (You should verify the result by hand.) 

b) Determine the height  such that half of the mass of the hemisphere lies between 

 and .  Use Matlab to carry out any necessary computations.  Check your 

work by hand! 

0z z"
0z " 0z z"

Exercise 9.4 Evaluate the triple integral 
3 2 1 2 2 2

0 0 0
x y z dxdydz& &7 7 7  using four different 

methods in Matlab: 

a) Exactly, using symbolic integration with the int command. 

b) numerically, using the command triplequad. 

c) numerically, using the command quadvec. 

d) writing your own routine, trpmidpoint to estimate the mid-point Riemann sum 
approximation to the triple integral.  Model your code after the code for dblmidpoint. 

Include the results of using the first three methods in one M-file, clearly separating the 
parts and their output using cell dividers. (See note in Exercise 9.1)  Submit the results 
using method d) in a separate M-file that contains the code for implementing the 
computation. 
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Exercise 9.5 Referring to the plot described in Exercise 7.6, using double integrals find 
the volume of the region inside both cylinders and lying above the xy-plane.  Your M-file 
should generate  

a) The picture of the 3D region whose volume is requested (see Exercise 7.6) 

b) the picture of the 2D region of integration  

c) the volume computed using iterated integration and the int function. 

Your M-file should be divided into cells with the output requested above apppearing after 
the appropriate cell. 

Exercise 9.6 Referring to the plot described in Exercise 7.8, find the volume of the region 
inside the sphere and above the xy-plane that lies within the cylinder.  Your M-file should 
generate  

a) The picture of the 3D region whose volume is requested (see Exercise 7.8) 

b) the picture of the 2D region of integration 

c) the volume computed using iterated integration and the int function. 

Your M-file should be divided into cells with the output requested above apppearing after 
the appropriate cell. 

9.13 

 



10: Sequences and Series 
Infinite series play an important role in many areas of applied mathematics, such as 
probability theory, differential equations, and signal processing, to name a few.  In 
addition, the theoretical questions related to the notion of convergence provide the basis 
for the underlying theory of calculus, on which much of modern mathematics rests. 

Matlab cannot help you determine what convergence test to use to justify the 
convergence or divergence of a particular sequence or series. It can however do two 
things that are both useful.  First, it can compute accurate numerical approximations that 
can help you assess the existence of a limit and its numerical value.  Second, using the 
Symbolic Toolbox, it can in many cases provide you with a symbolic expression for the 
value of a limit.  In this chapter, we will consider how to use Matlab in each of these 
ways. 

10.1 Numerical Estimation 

10.1.1 Sequences 

A sequence is an ordered list of (real) numbers, which we usually refer to in a subscript 
notation as .  From a more mathematical perspective, a sequence defines a 

function, a, whose domain is the set of natural numbers.  The value of this function at 
 is written as , instead of the more traditional , similarly  instead of , 

etc.  From the point of view of Matlab, we can therefore define a sequence as we do any 
other function, except we will use letters such as k, and n, for the independent variables, 
rather than x and y, and we will also often use letters such as a and b for the function 
names, rather than f and g. 

1 2, , , ,na a a! !

1n " 1a (1)a 2a (2)a

Example 10.1: Define the sequence 
2

( 1)
1

k

k

k
a

k
%

"
&

 as an anonymous function of k.  

Generate the first 10 values in the sequence. 

Solution: Since we want to generate a list of values, we should define the function as a 
vectorized expression. 

a=@(k)(-1).^k.*k./(k.^2+1)   

 

a =  

    @(k)(-1).^k.*k./(k.^2+1)   

Now we evaluate this function on the sequence 1:10 to find its first ten values. 

a(1:10)   

 

ans = 

  Columns 1 through 7  

   -0.5000    0.4000   -0.3000    0.2353   -0.1923    0.1622   -0.1400 

10.1 
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  Columns 8 through 10  

    0.1231   -0.1098    0.0990   

 

As expected, the terms alternate in sign and are getting smaller in magnitude as k 
increases.    ! 

In this example, it is mathematically pretty obvious that 
2

( 1)
lim 0

1

k

k

k
k-:

%
"

&
, since the 

quotient 2(1 )
k

k&
 tends to zero.  We can get a visual sense of that behavior by plotting 

the values of the sequence  for a large run of values of k.  We do this is in the 

following example, using the first 100 values in the sequence (not actually a very long 
run) and then using 10,000 values. 

ka

Example 10.2: Plot the first 100 and then the first 10,000 values of the sequence 
2

( 1)
1

k k
k

%
&

. 

Solution: We generate two plots, placing them side by side using the subplot 
command. 

clf; 

n=100; 

a=@(k)(-1).^k.*k./(k.^2+1); 

vals=a(1:n); 

subplot(1,2,1); 

plot(vals,'or','MarkerSize',2); %plot sequence values using red 'o' 
marker, with no connecting line 

title('Sequence (-1)^k k/(1+k^2)'); 

xlabel('k');ylabel('value'); 

n=10000; 

vals=a(1:n); 

subplot(1,2,2); 

semilogx(vals, 'or', 'MarkerSize',2); %Log scale on k axis 

title('Sequence (-1)^k k/(1+k^2)'); 

xlabel('k');ylabel('value'); 
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Note that the plot commands did not specify the values of the independent variable. If 
these are not given, Matlab plots the sequence values against 1,2,…n, where n  is the 
number of entries, which is what we wanted anyway. We did not connect the points, 
because technically the sequence only consists of the values generated.  There is nothing 
wrong with connecting the points as a visual guide, as long as you realize that the 
segments joining successive points have no other meaning. 

In the second plot we have used a semi-log plot in which the k axis is plotted on a 
logarithmic scale. In this type of plot, successive powers of 10 are equally spaced. Such 
plots (and the related loglog plot) are useful when the domain and/or range encompass 
values spread over several orders of magnitude (powers of 10).  The behavior within each 
decile (power of ten) is then more clearly displayed.  Note that between 1 and 10 we only 
have 10 values to plot, which show up as discrete points. In the interval from 11 to 100 
there are 90 values, and many more in the larger deciles.  Squeezing these into the 
allotted space produces the appearance of a smooth graph. 

Both plots clearly show that the numbers in the sequence are approaching zero or at least 
some numerically very small value.  !  

We have examined a sequence given by an explicit formula.  An alternate way to 
generate a sequence is through recursion.  In this process, we state values for one or more 
initial terms of the sequence.  The recursive definition shows how to compute additional 
terms.  For example, the famous Fibonacci sequence is determined by the recursion: 

 . 1 2 1 21, 1,   if 3k k kf f f f f k% %" " " & 8
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From the last formula or recursion, we have 3 2 1 2f f f" & " , 4 3 2 2 1 3f f f" & " & " , 

, and so on.  If we wished to find 5 4 3 3 2 5f f f" & " & " 100f , we would need to find all 

the Fibonacci numbers for , which makes for considerably more work than when 
we examined the explict sequence in Example 10.1.  Nonetheless, here are the commands 
of a short M-file to compute that result. The reader ought to enter this as an M-file and 
observe how the Matlab editor handles the looping "for…end" command when it is 
typed. 

100k ;

Example 10.3: Compute the 100th Fibonacci using the Symbolic Toolbox. 

Solution: We use the symbolic toolbox so as to compute the exact integer value.  The 
program computes a vector f whose components are the first 100 Fibonacci numbers: 

clear f ;  

% Clears f of any existing values. Useful when dealing with vector 
quantities so that previously computed components are not accidentally 
retained. 

n=100; % the number of Fibonnaci numbers you want to compute. 

f(1)=sym(1);f(2)=sym(1);   

% Initialize the list to symbolic integer values using sym.  Further 
calculations will automatically be done in exact arithmetic. 

for k=3:n  

 f(k)=f(k-1)+f(k-2);   

% recursive step; Note semicolon to suppress output. 

end;     % for loop to repeatedly execute recursive statement 

f(n)   % display final value   

 

ans = 

354224848179261915075   

As you can see the number is quite large.  If we had run the program by setting f(1)=1 
and f(2)=1 the computation would have run in normal machine arithmetic and we 
would have obtained an approximation to the above value, namely 

double(ans)   

 

ans = 

  3.5422e+020  . ! 

Recursively defined sequences play an important role in many areas of mathematics, but 
we only mention them here for the sake of completeness.  From a computational point of 
view they present more of a challenge than explicitly defined sequences, because at each 
stage the next computed value depends on previously computed values.  Using the usual 
floating point arithmetic on the computer this may lead to magnification of small round-
off errors at each stage into significant errors in the long term computation.    
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10.1.2 Series 

We can associate with a numerical sequence  a new sequence, called the sequence of 

partial sums, defined by  
ka

 

1 1

2 1 2

3 1 2 3

1 2n n

s a

s a a

s a a a

s a a a

"
" &
" & &

" & & &
"

"
"

. 

If the sequence of these partial sums has a limit L we say the the infinite series  

converges to L.  We write this as 

1
k

k

a
:

"
<

1
k

k

a L
:

"

"< . 

The partial sum sequence can also be defined recursively by 1s a1"  and for , by 

.  This definition assumes that the values of  have been computed 

elsewhere (or are given by some formula that can be evaluated for each n). 

2n 8

1n ns s a%" & n na

Concretely, you can think of the relationship between the sequences  and  as 

follows. The numbers  represent weekly deposits (if positive) or withdrawals (if 

negative) from a bank account.  The partial sums give the total accumulation in the 
account each week.  How does your pattern of weekly deposits affect the pattern of your 
total accumulations?  Well, the theory of infinite series you are studying in class tries to 
provide some answers to that question.  Here we will use Matlab to investigate the 
sequence of partial sums in a manner similar to our earlier investigation of sequences. 

ka ks

ka

The principal tool in doing this is the command cumsum, short for cumlative sum. 
Following our analogy with a bank account, this simply computes the accumulated sum 
in your account at the end of each time period. For example, with 

x=[1 2 3 4];   

we have 

cumsum(x)   

 

ans = 

     1     3     6    10  . 

In short, cumsum generates the sequence of partial sums associated with the infinite 

series .  We can plot this sequence to generate a visual picture of the behavior of 

the partial sum sequence. 
1

k
k

a
:

"
<

10.5 

 



10–Series 

Example 10.4: Make a semilog plot of the partial sums of the first 1000 terms of the 

series 
1

1

( 1) 1 1
1

2 3

k

k k

&:

"

%
" % & &< " .  Does the plot give evidence of the convergence of the 

series? 

Solution:  

clf 

a=@(k)(-1).^(k+1)./k; % define the sequence 

n=1000; 

vals=a(1:n); 

s=cumsum(vals); 

semilogx(s, 'or', 'MarkerSize',2) 

xlabel('k');ylabel('part sums'); 

title('Partial Sums of \Sigma (-1)^(k+1)/k')  

% \Sigma codes for Greek letter upper case sigma   
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The series seems to be approaching a limit.  The term  

s(1000)   

is 

ans = 

    0.6926   
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and based on the graph, this should be a good approximation to the limit of the series, 
though this cannot be ascertained from the numerical computation alone. Comparing this 
partial sum to the previous one  

s(999)   

 

ans = 

    0.6936  , 

we have some confidence in asserting that the limit value is between .692 and .694, or in 
less precise terms .693 .  In this case, the error estimates associated with alternating 
series provide a rigorous justification for this conclusion. ! 

.0013

The harmonic series 
1

1
k

k

:

"
<  is an important example of a divergent series whose terms go 

to zero.  Is such behavior detectable using Matlab? 

Example 10.5: Make a semilog plot of the partial sums of the first 1000 terms of the 
harmonic series.  Discuss the convergence of the series as it relates to the plot. 

Solution: 
clf 

a=@(k)1./k; % define the sequence 

n=1000; 

vals=a(1:n); 

s=cumsum(vals); 

semilogx(s, 'or', 'MarkerSize',2) 

xlabel('k');ylabel('part sums'); 

title('Partial Sums of \Sigma 1/k')   
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The graph is strikingly different from the graphs for the partial sums of a convergent 
series.  While the picture does not preclude that the partial sums converge, it certainly 
provides no compelling reason to think so, and a strong suggestion that they do not.  
Nonetheless, only a mathematical argument based on examining properties of the 
sequence can actually settle that question. ! 

10.2 Symbolic Limits 

The Symbolic Toolbox in Matlab is capable of finding limits of many sequences and 
series.  These may be expressed in terms of familiar functions and mathematical 
constants, or may involve values of special functions.  Many of these results rest on 
mathematical analysis that is quite advanced and well beyond the level of this course.  
However, these results are of interest because they often point to mysterious connections 
between seemingly unconnected parts of mathematics.  The exercises will present more 
examples for the reader to consider. 

Example 10.6: Find the value of 
1

lim 1
k

k k-:

' +&( ,
) *

. 

Solution:  

First declare k symbolic. Then use the limit function. 

syms k 

limit((1+1/k)^k,inf) % inf is the Matlab abbreviation for "infinity"   

 

ans = 

exp(1)   
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The answer, which is e, is expressed as a value of the exponential function. ! 

More impressive are the results obtained for infinite series. The command symsum 
computes the symbolic limit. 

Example 10.7: Find the value of 
1

1

( 1)k

k k

&:

"

%< . 

Solution:  
syms k 

symsum((-1)^(k+1)/k,1,inf) % last two arguments give the summation range   

 

ans = 

log(2)   

The answer is expressed in term of the natural log function. Note the value is  

double(ans)   

 

ans = 

    0.6931   

 

The reader should compare this to the numerical approximation computed in Example 
10.4.  ! 

10.3 Summary 

A sequence is a function whose domain is the set of natural numbers.  Such functions can 
be defined using the standard method of anonymous functions or can be constructed 
through recursive definitions.  

We can analyze the limit behavior of sequences and series through numerical 
computation. The results can be usefully presented in graphical format. The Symbolic 
Toolbox provides commands that can be used in many cases to find exact formulas for 
limits. 

The following commands were introduced in this chapter: 

semilogx: - plot with independent variable displayed in a logarithmic scale 

cumsum: - computes sequence of partial sums of a numerical sequence 

limit:- compute a symbolic limit of an explicitly given sequence 

symsum: - compute a symbolic expression for a sum of terms of an explicitly given 
sequence 

10.4 Exercises 
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Exercise 10.1  Let 
1

k
ka k" .  Write an M-file that  

a) plots (you can use a regular plot, instead of a semilog plot) the first 100 values of the 
sequence as individual points 

b) based on the numeric values generated makes an estimate of the limit of the sequence 

c) uses the Symbolic Toolbox to find the exact limit.  

Publish your M-file. The results of a), b), and c) should appear as separate output from 
different cells in the file.  Don't forget to include your name at the top.   

Exercise 10.2 Repeat the instructions in Exercise 10.1 for the sequence 
2

1
k

ka
k

' +" %( ,
) *

. 

Exercise 10.3 Investigate which if any of the following sequences have limits.  Provide 
all possible justifications for your answer using a variety of Matlab computations and 
graphs. Present your work in the form of a published M-file with appropriate comments: 

a)  sin( )ka k"

b)  (sin( ))k
kb k"

c) 
1 1 1

1 l
2 3kc k

k
" & & & & %" n   

Exercise 10.4 Every year your bank account earns 5% interest on the principal on deposit 
for that entire year. In addition, you make an additional deposit of $1000 into the account 
at the end of each year and no withdrawals.  Let  denote the principal in the account at 

the beginning of year n.  
nP

a) For , express the principal  in terms of the principal 2n 8 nP 1nP % .  

b) Assuming your initial principal is 1 $1000P " , find the principal at the beginning of 

year 21. How much of that principal is interest?  Make a graph showing the growth of the 
principal from year 1 to year 21.  

c) Assuming the same initial deposit of $1000 and a 5% interest rate, what is the 
minimum you would have to deposit each year (assuming equal deposits) in order for 
your accumulation to reach $50,000 by the beginning of year 21?  Display your result 
graphically. 

Exercise 10.5 Write an M-file to generate a semilogy plot of the first 100 Fibonacci 
numbers.  What can you deduce from the pattern of the plot for large k?  Extend the plot 
for a larger range of the index.  Use your plot to develop an approximate explicit formula 
for the kth Fibonacci number.   

Exercise 10.6 Modify the Fibonacci sequence so that for  the recursion is 3n 8

1 2 ( 1)k
k k kf f f% %" & & % k .  How large is the 100th value of this sequence?  Produce an 

appropriate plot showing the values of the numbers in this sequence. 
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Exercise 10.7 Investigate the convergence or divergence of each of the following series.  
You should use numerical and/or symbolic computations to arrive at your conclusions.  
To the extent possible you should confirm your answers using the theory covered in the 
course.  Present the response to each part as a separate published M-file. 

a) 
1

1

( 1)
2

k

k
k

&:

"

%<  

b) 
1

1
!k k

:

"
<  (The quantity  can be entered in Matlab as factorial(k).) !k

c) 
1

sin( )

k

k
k

:

"
<  

d) 
2

1

sin( )

k

k
k

:

"
<  

e) 
1

1

( 1)( 2k k k k

:

" & &< )
 

f)
2

1

1

k k

:

"
<  

g) 2
1

( 1)
1

k

k k

:

"

%
&<  
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11: Power Series 
One of the main applications of the theory of numerical series is to the study of series of 
functions.  In particular, when the functions take the simple form of powers of the 
variable multiplied by a constant, we speak of a power series.  Such series are a 
workhorse of many numerical methods in mathematics because they allow one to 
approximate complicated functions by much simpler ones.  Infinite series comprised of 
trigonometric functions, so-called Fourier series, play a similar role when studying 
periodic phenomena.   

Matlab is quite useful in helping us visualize the convergence process and approximating 
a limit when one exists.  In many cases, it can also provide closed formulas for the limit 
function of an infinite series.  We will use the Symbolic Toolbox in our analysis, since 
restricting the treatment to just numerical manipulations in Matlab presents some 
technical difficulties that would obscure the mathematical ideas.   

11.1 Plotting Power Series 

A power series is an infinite series of the form  

  
0

( )k
k

k

a x c
:

"

%<

where the  and c are real numbers.  The principal question concerning such an object is 

determining the set of values of the variable x for which the series converges.  The theory 
of series informs us that convergence occurs in some interval of length 2R centered 
around the point c, where 

ka

R  may be zero or infinity. This is called the interval of 
convergence and the quantity R is called the radius of convergence.  If 0 , further 
analysis is required to determine whether the series converges at the endpoints c  and 

.   

R; ; :
R%

c R&

Assuming you have determined the interval of convergence for a particular power series, 

we will write an M-file that plots the series and a partial sum  , where n is 

chosen by the user.  We will consider the example  
0

( )
n

k
k

k

a x c
"

%<

 
1

2k
k

k

x
k

:

"
< , 

which converges in the interval 1
2x ; .  

Example 11.1: Plot the limit of the series 
1

2k
k

k

x
k

:

"
<  and the partial sum 

5

1

2k
k

k

x
k"

< on the 

interval [ 1 2,1 2]% . 

Solution:  

11.1 
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Since we will be generating and plotting symbolic expressions we will be working with 
ezplot, which we studied at the beginning of the course. 

syms k x 

clf; hold on 

%%%%% User Input %%%%%%% 

a=@(k)2^k/k;  % define coefficient sequence 

f=@(x)symsum(a(k)*x^k,k,1,inf); %define series 

p=@(x,n)symsum(a(k)*x^k,k,1,n); % define partial sum 

n=5;  % degree of partial sum 

x1=-1/2;x2=1/2; % endpoints of plotting interval 

%%%%% End User Input %%%%%%% 

h=ezplot(f(x), [x1,x2]);  % plot limit function 

set(h, 'Color','r', 'LineStyle','-.'); % use handle to set properties 

ezplot(p(x,n), [x1,x2]); % plot partial sum; leave default style 

legend('series',['n = ', num2str(n)]);   

% num2str converts n into a string 

title(['Series  \Sigma ',char(a(k)), '*x^k and Partial Sum' ]); 

hold off   
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series

n = 5
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The two graphs are almost indistinguishable throughout the interval of convergence. The 
symsum command actually computes the limit of the power series.  Namely, 

symsum(2^k/k*x^k, k, 1, inf)   

 

ans = 

-log(1-2*x)   

For convenience, this M-file is available in the course M-file folder as powseries.m. 

Note, this M-file will only work for power series for which Matlab is able to find a closed 

form expression.  For example, even though the series 
1

k

k

x

k

:

"
<  converges on the interval 

, Matlab cannot determine an explicit formula for the series and therefore is unable 

to execute the ezplot command. ! 

( 1,1)%

11.2 Taylor Series 

A power series determines a function on its interval of convergence. We can recover the 
power series coefficients from this function by successive differentiation.  Namely, if  

 
0

( ) ( )k
k

k

f x a x c
:

"

" %<  

then 
( ) ( )

!

k

k

f c
a

k
" .  If we only have the function  to begin with, we can use the latter 

formula for  (provided f is infinitely differentiable) to define a power series.  This 

series is called the Taylor series of the function f around 

( )f x

ka

x c" , or in powers of .  
For most functions this series converges to the original function, at least on the interior of 
the interval of convergence for the series.  The partial sum,  

x c%

 
( )

0

( )
( ) ( )

!

kn
k

n
k

f c
p x x

k"

" %< c  

is called a Taylor polynomial (of degree n). 

We illustrate computations with Taylor polynomials in Matlab and then leave it to the 
reader to exhibit graphically the convergence of these series through a simple 
modification of our previous program.  

Example 11.2: Let .  Find the Taylor polynomial ( ) sinf x x" 9 ( )p x  with center  

(i.e. Maclaurin series) and compare the values of 

0c "

9 ( 2p )#  and sin( ) 12
# " . 

Solution: The taylor command computes Taylor polynomials for a given function. We 
convert the output to a polynomial function using the method described in Example 6.6. 

11.3 

 



11–Power Series 

syms x 

tpoly=taylor(sin(x),10)  % defines taylor polynomial expression 

p=@(x)subs(tpoly);  % taylor polynomial function 

approx_error= abs(p(pi)-sin(pi)) % absolute difference in approximation   

 

tpoly = 

x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9 

approx_error = 

    0.0069   

 ! 

Although it is a straightforward matter to modify the M-file powseries.m to have it 
plot a function and its Taylor polynomial, we can save ourselves some work by using a 
built-in Matlab M-file for that purpose.  This is the file taylortool.  When entered 
from the command line, this brings up an interactive dialog box as shown below: 

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

Taylor Series Approximation

T
N
(x) = x-1/2 x3+1/24 x5-1/720 x7

 

 

The user can change the function and various other settings and observe the effect on 
convergence. 

11.3 Summary 
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Power series can be easily defined through the Symbolic Toolbox using the symsum 
command.  The taylor command generates Taylor polynomials.   

The following commands were introduced in this chapter: 

taylor: - generate taylor polynomial for a symbolic expression. See help page for 
options to specify center and degree of expansion. 

num2str: - convert a number to a string.  This is useful in constructing informative 
titles and legends that contain a reference to a numerical parameter.  Usually this is 
concatenated with other text using [text1, text2, …] to produce a meaningful annotation. 

11.4 Exercises 

Exercise 11.1  Find the interval of convergence for each of the following series. (Use the 
usual methods to do so.)  Modify the file powseries.m so as to generate two plots:  the 
first plot showing the series and an appropriate partial sum, and the second, in a separate 
window, showing the absolute difference (error) between the two functions.   

Select your partial sum so it provides a reasonable approximation to the series throughout 
most of the interval of convergence.  Publish your result.  Make sure your graphs have 
clear titles that explain their content.  

a) 
2

1

( 1)
k

k

k

x
k

:

"

%<  

b)   
0

3
2 1

k k

k

x
k

:

" &<  

Exercise 11.2 The file powseries.m only works for power series for which Matlab can 
find an explicit sum.  Modify the file so that instead of drawing the graph of the entire 
power series and the nth partial sum, it draws the graphs of the nth and (2n)th partial 
sums over the convergence interval. Don't forget to modify the legend and title 
appropriately. 

In each of the following examples, determine the interval of convergence of the series in 
the usual way.  Then use your modified M-file to plot a pair of partial sums that exhibit 
the convergence of the partial sums to a limit.  

a) 
1

( 1)
k

k

k

x

k

:

"

%<  

b) 2
0 4

k

k

x
k

:

" &<  

Exercise 11.3 Modify the M-file powseries.m so that it displays the graph of the 
function  over the interval ( ) sinf x x x" > ?2 ,2# #%  and the graph of the Taylor 

polynomial with center  and degree 8.  Use an appropriate title and legend.  
Organize the file so that the data on the function, plotting interval, center of the 

0c "
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expansion, degree of the approximation appear in a clearly marked "User Entry Section" 
near the beginning.  Publish your file and its output to html. 

Exercise 11.4 The Lagrange error estimate says that  

 
( 1)

1 11
( )

( ) ( )
( 1)! ( 1)!

n
n nn

n

f M
f x p x x c x c

n n

/&
& &&% . % . %

& &
 

where, ( )np x  is the degree n Taylor polynomial at with center c, /  is some number 

between x and c, and 1nM &  is the maximum absolute value of the 1n& st derivative on the 

interval containing x and c.  We can use Matlab to estimate this error estimate and 
compare it to the actual error.   

In each of the following, make a plot of the appropriate derivative function to estimate its 
maximum absolute value on the stated interval.  From this result determine an upper 
bound for the Lagrange error estimate and compare this upper bound with the absolute 
difference between  and ( )f x ( )np x  found by plotting ( ) ( )nf x p x% .  Publish each 

example in a separate M-file. 

a) , , ,  interval: [ .( ) sinf x x" 0c " 3n " 5,.5]%   

b) , , , interval: [ .( ) tanf x x" 0c " 5n " 5,.5]%  

c) , ( ) sinf x x" 4c #" , , interval: [ , ] (N.B. You will need to convert to 

radians) 

5n " 40# 50#

d)  , , , interval: [0  ( ) ln(1 )f x x" & 0c " 7n " ,.5]
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d) MATLAB Primer, 7e, by T. Davis and K. Sigmon, CRC Press, 2005 
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Command Index for Notes on Matlab  

The column labeled "Page" refers to the page on which the command is first introduced (occasionally a second page is listed when 
significant new information occurs on the second page).  When two related commands are listed, the page references for each are 
separated by a /. We have left room in the comments section for the reader to write his or her own marginal notes on each command.  
This makes for a useful review guide in preparing for the final. Entries in boldface mark essential commands whose use must be well 
understood. 

Category      Page Comments Category Page Comments

Symbolic Math   Graphics   

char  2.4 axis 2.4, 3.9  

diff 1.5   clabel 5.3  

double   9.1 clf 1.5  

ezplot;ezplot3  1.1/4.1  contour; contour3 5.1/5.10  

ezsurf 4.2  ellipsoid  7.8  

int 9.1    FaceAlpha 7.4  

limit   10.8  FaceColor 6.8  

pretty    6.6  gradient 8.6  

subs 6.5  grid on/off 2.3  

syms; sym 1.1/11.4   hold on/off 1.3  

symsum 10.9   legend 2.4  

taylor 11.3   Line specs 2.3, 3.9  

taylortool    11.4  LineStyle 2.4  

     LineWidth 2.4  

Numerical Math   MarkerSize  6.8  

@ (anon. 
function) 

6.1   meshgrid 4.7  

colon(:) 3.10   plot; plot3 3.2/4.4  

cumsum 10.5   quiver; quiver3 8.1/8.3  

"dot" operator 3.5  semilogx; semilogy 10.2  

linspace    3.5 set 2.4  
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I.2 

Numerical Math   Comments Graphics  Comments 

quad; dblquad 9.2/9.6    shading 8.4  

quadvec     9.8 sphere 7.5  

sqrt, exp, log, log10, 
sin, cos, tan, pi 

various    subplot 4.3  

sum 9.4, 9.6  surf; surfc 4.8/5.6  

vectorize 6.4    title 2.4

   view 4.2  

Misc 
Commands 

  xlabel; ylabel;
zlabel 

 3.7 (4.5)   

clear 10.4  xlim; ylim 6.9  

for…end  10.4  Xtick, Ytick, 3.11  

input  2.6  Xticklabel, 
Yticklabel 

3.11  

num2str    11.2   

pause   4.11   

% (comment) 2.1     

semicolon (;) 2.3     

 


