A **power series** is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

For instance, if we take $c_n = 1$ for all n, the power series becomes the geometric series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

which converges when -1 < x < 1 and diverges when $|x| \ge 1$.

More generally, a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$

is called a power series in (x-a) or a power series centered at a or a power series about a.

4 Theorem

- (i) The series converges only when x = a.
- (ii) The series converges for all x.
- (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R. (The number R is called the **radius of convergence** of the power series.)

The table below summarizes the radius of convergence for each examples in section 11.8 (recopy the examples to help understand better).

	Series	Radius of Convergence	Interval of Convergence
Geometric series	$\sum_{n=0}^{\infty} \chi^n$	R=1	(-1,1)
Example 1	$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$	R=1	[2,4)
Example 2	$\sum_{n=0}^{\infty} n! x^n$	R = 0	{0}
Example 3	$\sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$	$R = \infty$	$(-\infty,\infty)$

Pages 2 and 3 lists descriptions from Thomas' Calculus textbook.

Definition

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \dots, c_n, \dots$ are constants.

Theorem 18 - The Convergence Theorem for Power Series

If the power series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

converges at $x = c \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

Corollary to Theorem 18

The convergence of the series $\sum c_n(x-a)^n$ is described by one of the following three cases:

- 1. There is a positive number R such that the series diverges for x with |x-a| > R but converges absolutely for x with |x-a| < R. The series may or may not converge at either of the endpoints x = a R and x = a + R.
- 2. The series converges absolutely for every x ($R = \infty$).
- 3. The series converges at x = a and diverges elsewhere (R = 0).

How to Test a Power Series for Convergence

- 1. Use the Ratio Test (or Root Test) to find the largest open interval where the series converges absolutely. |x-a| < R or a-R < x < a+R.
- 2. If *R* is finite, test for convergence or divergence at each endpoint, as in Examples 3a and b (see pages 626 to 628). Use a Comparison Test, the Integral Test, or the Alternating Series Test.
- 3. If *R* is finite, the series diverges for |x-a| > R (it does not even converge conditionally) because the *n*th term does not approach zero for those values of *x*.

Theorem 19 - Series Multiplication for Power Series

If $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for |x| < R, and

$$c_n = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_{n-1} b_1 + a_n b_0 = \sum_{k=0}^n a_k b_{n-k}$$
,

then $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely to A(x)B(x) for |x| < R:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

Theorem 20

If $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for |x| < R and f is a continuous function, then $\sum_{n=0}^{\infty} a_n (f(x))^n$ converges absolutely on the set of points x where |f(x)| < R.

Theorem 21 - Term-by-Term Differentiation

If $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, it defines a function

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 on the interval $a-R < x < a+R$.

This function f has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating the original series term by term:

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - a)^{n-1}$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)c_n(x-a)^{n-2}$$

and so on. Each of these derived series converges at every point of the interval a - R < x < a + R.

Theorem 22 - Term-by-Term Integration

Suppose that

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

converges for a - R < x < a + R (R > 0). Then

$$\sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

converges for a - R < x < a + R and

$$\int f(x) \, dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

for a - R < x < a + R.

4)
$$\sum_{n=1}^{\infty} (-1)^n n x^n$$
 $a_n = (-1)^n n x^n$ $a_{n+1} = (-1)^{n+1} (n+1) x^{n+1}$
Ratio Jest

$$a_n = (-1)^n n \times^n$$

$$Q_{n+1} = \left(\gamma\right)^{n+1} \left(n+1\right) x^{n+1}$$

Ration less
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\left(-1\right)^{n+1} \left(n+1\right) x^{n+1}}{\left(-1\right)^n n > c^n} = \lim_{n \to \infty} \frac{\left(-1\right)^n \left(-1\right) \left(n+1\right) \left(x^n\right) \left(x^n\right)}{\left(-1\right)^n n > c^n}$$

$$=\frac{\lim_{n\to\infty}\left|\frac{(-1)(n+1)x}{n}\right|=\lim_{n\to\infty}\left|\frac{(n+1)(n+1)(-1)}{n}\left(-\frac{1}{n}\right)\left(-\frac{1}{n}\right)\left(-\frac{1}{n}\right)\right|$$

$$= \left| \left((1+0)(-x) \right| = \left| -x \right| = \left| x \right| \longrightarrow \left| x \right| < 1 \longrightarrow -1 < x < 1$$

radius of convergence: R=1

Indpoints when x=-1, $\sum_{n=1}^{\infty} (-1)^n n (-1)^n = \sum_{n=1}^{\infty} n \rightarrow C_n = n$

when x=1, $\sum_{n=1}^{\infty} (-1)^n (1)^n = \sum_{n=1}^{\infty} (-1)^n n \rightarrow d_n = (-1)^n n \rightarrow |d_n| = C_n = n$

 $\lim_{n\to\infty} \left| d_n \right| = \lim_{n\to\infty} c_n = \lim_{n\to\infty} n = +\infty$

by the Test for Divergence, diverges when 2C = -1 and 2C = 1

Interval of Convergence: I=(-1,1)

$$\left(\frac{1}{2}\right) \sum_{n=1}^{\infty} \frac{\left(-1\right)^n x^n}{\sqrt[3]{n}}$$

$$Q_n = \frac{(4)^n x^n}{3\sqrt{n}}$$

6)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt[3]{n}}$$
 $Q_n = \frac{(-1)^n x^n}{\sqrt[3]{n}}$ $Q_{n+1} = \frac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}}$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{(-1)^{n+1}}{3\sqrt{n+1}}}{\frac{3\sqrt{n+1}}{n+1}} \right| = \lim_{n\to\infty} \left| \frac{\left(\frac{(-1)^{n+1}}{3\sqrt{n+1}}\right) \left(\frac{3\sqrt{n}}{(-1)^n} x^n\right)}{\frac{3\sqrt{n+1}}{3\sqrt{n+1}}} \right|$$

$$=\lim_{n\to\infty}\left|\left(\frac{\left(-1\right)^{n}\left(-1\right)^{l}\left(x^{2}\right)\left(x^{l}\right)}{\sqrt[3]{n+1}}\right)\left(\frac{\sqrt[3]{n}}{\left(-1\right)^{n}x^{n}}\right)\right|=\lim_{n\to\infty}\left|\frac{\left(-1\right)\left(x\right)^{\sqrt[3]{n}}}{\sqrt[3]{n+1}}\right|$$

6) continued ... 11.8/5 $= \lim_{n \to \infty} \left| (x) \sqrt[3]{\frac{n}{n+1}} \right| = \lim_{n \to \infty} \left| x \sqrt[3]{\frac{n}{n}} \right| = \lim_{n \to \infty} \left| x \sqrt[3]{\frac{1}{1+\frac{1}{n}}} \right|$ $=\left|x\left|\sqrt[3]{\frac{1}{1+o}}\right|=\left|x\left(1\right)\right|=\left|x\left(1\right)\right|=\left|x\left(1\right)\right|\rightarrow\left|x\left(1\right)\rightarrow\left|x\left(1\right)\right|\rightarrow\left|x\left(1\right)\right|$ radius of convergence: R=1 When x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n}{\sqrt[3]{n!}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n!}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ is a φ -slries with $p = \frac{1}{3} \le 1$ which diverges when x=1: $\sum_{n=1}^{\infty} \frac{(-1)^n (1)^n}{3\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{3\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{1}{3}}} \quad C_n = \frac{(-1)^n}{n^{\frac{1}{3}}}$ $b_n = |C_n| = \frac{1}{n^{\frac{1}{3}}}$ "not absolutely convergent (see above)" ① flor $n \ge 1$, $b_n = \frac{1}{n^{\frac{1}{3}}} > 0$, $\frac{1}{n^{\frac{1}{3}}} = b_n > b_{n+1} = \frac{1}{(n+1)^{\frac{1}{3}}}$ {bn} is decreasing (2) $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{3\sqrt{n}} = 0$ by the alternating Lener test, convergent when x=1Interval of convergence: I = (-1, 1) $a_n = \frac{5^n}{n} x^n \qquad a_{n+1} = \frac{5^{n+1}}{n+1} x^{n+1}$ $\left(\frac{5}{n}\right)^{\frac{5}{n}} \times n$

 $\begin{cases} 2 \frac{5}{n} x^{n} & a_{n} = \frac{5}{n} x^{n} \\ Ratio Jest \\ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \lim_{n \to \infty} \left| \frac{\frac{5}{n+1} x^{n+1}}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{5}{n+1} x^{n+1}\right) \left(\frac{n}{n+1}\right)}{n+1} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x^{n+1}\right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x^{n+1}\right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x^{n+1}\right| = \lim_{n$

11.8/6

=
$$\lim_{n\to\infty} \left| \frac{(5^n)(5^i)(x^n)(x^i)}{n+i} \right| \frac{n}{(5^n x^n)} \right| = \lim_{n\to\infty} \left| \frac{5n}{n+i} x \right| = \lim_{n\to\infty$$

$$| (0) \sum_{n=1}^{\infty} \frac{n}{n+1} \chi^{n} \qquad a_{n} = \frac{n}{n+1} \chi^{n} \qquad a_{n+1} = \frac{(n+1)}{(n+1)+1} \chi^{n+1} = \frac{(n+1)}{n+2} \chi^{n+1}$$

$$| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)}{n+2} \chi^{n+1}}{\frac{n}{n+2}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)}{n+2} \chi^{n+1} \right| = \lim_{n \to \infty} \left| \frac{(n+1)}{n+2} \chi^{n+1} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(n+1)}{n} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(n+1)}{n} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{n^{2} + 2n + 1}{n^{2} + 2n} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{2}{n} + \frac{1}{n^{2}}}{\frac{n^{2} + 2n}{n^{2}} \chi^{n}} \chi^{n} \right|$$

$$=\left|\frac{1+0+0}{1+0}x\right|=\left|x\right|\rightarrow\left|x\right|c\right|\rightarrow\left|x\right|c\right|$$

radius of convergence: R=1

when
$$\chi = 1$$
, $\sum_{n=1}^{\infty} \frac{n}{n+1} (1)^n = \sum_{n=1}^{\infty} \frac{n}{n+1} C_n = \frac{n}{n+1}$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1} = 1 \neq 0$$

when
$$x=-1$$
 $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(-1\right)^n$ $d_n = \frac{n}{n+1} \left(-1\right)^n$ $d_n = \left|d_n\right| = \frac{n}{n+1}$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{n+1} = 1 \Rightarrow \text{ Alternating Levies Lest does not apply}$$

$$\lim_{n\to\infty} d_n = \lim_{n\to\infty} \frac{n}{n+1} (1)^n D. N. E.$$

by the Test for Thiresgence, diverges for when x = |and x = 1|

Interval of convergence: I=(-1,1)

$$|2\rangle \sum_{n=1}^{\infty} \frac{(-1)^n \times^n}{n^2} \qquad Q_n = \frac{(-1)^n \times^n}{n^2} \qquad Q_{n+1} = \frac{(-1)^{n+1} \times^{n+1}}{(n+1)^2}$$

$$|2\rangle \sum_{n=1}^{\infty} \frac{(-1)^n \times^n}{n^2} \qquad Q_n = \frac{(-1)^n \times^n}{(n+1)^2} \qquad Q_{n+1} = \frac{(-1)^{n+1} \times^{n+1}}{(n+1)^2}$$

$$|2\rangle \sum_{n=1}^{\infty} \frac{(-1)^n \times^n}{n^2} \qquad Q_n = \frac{(-1)^n \times^n}{(n+1)^2} \qquad Q_n = \frac{(-1)^n \times^n}{(n+1)^2}$$

$$|2\rangle \sum_{n=1}^{\infty} \frac{(-1)^n \times^n}{n^2} \qquad Q_n = \frac{(-1)^n \times^n}{(n+1)^2} \qquad Q_n = \frac{(-1)^n \times$$

$$= \lim_{n \to \infty} \left| \left(\frac{(-1)^n (-1)^l (xc^n) (xc^l)}{(n+1)^2} \right) \left(\frac{n^2}{(-1)^n x^n} \right) \right| = \lim_{n \to \infty} \left| \frac{(-1)(xc) n^2}{(n+1)^2} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n^2}{(n+1)^2} \approx \right| = \lim_{n \to \infty} \left| \left(\frac{n}{n+1} \right)^2 \right| = \lim_{n \to \infty} \left| \left(\frac{n}{n} \right)^2 \right| = \left| \frac{n}{n+1} \right| = \left| \frac{n}{n+$$

$$=\lim_{n\to\infty}\left|\left(\frac{1}{1+\frac{1}{n}}\right)^2x\right|=\left|\left(\frac{1}{1+0}\right)^2x\right|=\left|x\right|\to\left|x\right|<1\to -1< x<1$$

11.8/8 12) continued... radius of convergence: R=1 when x = -1, $\sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-slies with p = 2 > 1which converges. when x=1, $\sum_{n=1}^{\infty} \frac{(-1)^n (1)}{n^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ $C_n = \frac{(-1)^n}{n^2}$ $d_n = |C_n| = \frac{1}{n^2}$ it is absolutely convergent and convergent by the alternating Leries Test. Interval of convergence: I=[-1,1] $(4) \sum_{n=1}^{\infty} n^n x^n \qquad \alpha_n = n^n x^n = (nx)^n \quad \text{use Root Lest}''$ $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{(nx)^n} = \lim_{n\to\infty} |nx| = \lim_{n\to\infty} \sqrt[n]{x} = +\infty$ if $x \neq 0$ if x=0 then lin n/oc/=0 no endpoints radius of convergence: R=0 I= {0} Interval of convergence: (6) $\sum_{n=1}^{\infty} 2^{n} n^{2} x^{n}$ $a_{n} = 2^{n} n^{2} x^{n}$ $a_{n+1} = 2^{n+1} (n+1)^{2} x^{n+1}$ Ratio Test $\lim_{n \to \infty} \left| \frac{a_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1} (n+1)^2 x^{n+1}}{2^n n^2 x^n} \right| = \lim_{n \to \infty} \left| \frac{(2^n) (2^1) (n+1)^2 (x^n) (x^1)}{2^n n^2 x^n} \right|$ $= \lim_{n \to \infty} \left| (2) \left(\frac{n+1}{n} \right)^2 \chi \right| = \lim_{n \to \infty} \left| 2 \left(\frac{\frac{n+1}{n}}{n} \right)^2 \chi \right| = \lim_{n \to \infty} \left| 2 \left(\frac{1+\frac{1}{n}}{n} \right)^2 \chi \right|$ $= \left| 2\left(\frac{1+0}{1}\right)^{2} x \right| = \left| 2x \right| = 2\left| x \right| \rightarrow 2\left| x \right| < 1 \rightarrow \left| x \right| < \frac{1}{2} \rightarrow \frac{1}{2} < x < \frac{1}{2}$

radius of convergence: $R = \frac{1}{2}$

when $\alpha = \pm \frac{1}{2}$, $\sum_{n=1}^{\infty} (2)^n n^2 (\pm \frac{1}{2})^n = \sum_{n=1}^{\infty} (-1)^n n^2$ $C_n = (-1)^n n^2$

 $b_n = |C_n| = n^2$ dim $b_n = \lim_{n \to \infty} n^2 = +\infty$

by the Test for Llivergence, diverges for both $x = \pm \frac{1}{2}$

Interval of convergence: I=(-1/2)

 $(8) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} x^n \qquad Q_n = \frac{(-1)^{n-1}}{n \cdot 5^n} x^n \qquad Q_{n+1} = \frac{(-1)^{(n+1)-1}}{(n+1) \cdot 5^{n+1}} x^{n+1}$

Ratio Test
$$\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{(-1)^{(n+1)-1}}{x}}{\frac{(-1)^{n-1}}{x}} \right| = \lim_{n\to\infty} \left| \frac{(-1)^{(n+1)-1}}{(n+1)} \frac{n+1}{x}}{\frac{(-1)^{n-1}}{x}} \right|$$

$$=\lim_{n\to\infty}\left|\left(\frac{\left(-1\right)^{n-1}\left(-1\right)^{l}\left(x^{n}\right)\left(x^{l}\right)}{\left(n+1\right)\left(5^{n}\right)\left(5^{l}\right)}\right)\left(\frac{n}{\left(-1\right)^{n-1}n^{n}}\right)\right|=\lim_{n\to\infty}\left|\frac{\left(-1\right)x}{5\left(n+1\right)}\right|$$

 $= \lim_{n \to \infty} \left| \frac{n}{n+1} \frac{\chi}{5} \right| = \lim_{n \to \infty} \left| \frac{\frac{n}{n}}{\frac{n}{n+1}} \frac{\chi}{5} \right| = \lim_{n \to \infty} \left| \frac{1}{1+\frac{1}{n}} \frac{\chi}{5} \right|$

 $= \left| \frac{1}{1+0} \frac{x}{5} \right| = \left| \frac{x}{5} \right| = \frac{|x|}{5} = \frac{|x|}{5} \Rightarrow \frac{|x|}{5} < |x| < 5 \Rightarrow -5 < x < 5$

radius of convergence: R=5

when x=-5, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} (-5)^n = \sum_{n=1}^{\infty} \frac{-1}{n} = -\sum_{n=1}^{\infty} \frac{1}{n}$ is a f-sliely

with $\rho = | \leq |$ which diverges when x = 5, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n + 5n} (5)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges by the

Alternate Series Test. Interval of convergence: (-5,5]

$$20) \sum_{n=1}^{\infty} \frac{x^{2n}}{n!} \qquad a_n = \frac{x^n}{n!} \qquad a_{n+1} = \frac{x^{2(n+1)}}{(n+1)!}$$
Retire Jest

$$\mathcal{Q}_n = \frac{x^2}{n!}$$

$$a_{n+1} = \frac{2c^{2(n+1)}}{(n+1)!}$$

Ration Sest
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{x^{2(n+1)}}{(n+1)!}}{\frac{x^{2n}}{n!}} = \lim_{n \to \infty} \left(\frac{x^{2n+2}}{(n+1)!} \right) \left(\frac{n!}{x^{2n}} \right)$$

$$\frac{x}{(n+1)!}$$

$$\frac{x^{2n}}{n!}$$

$$- \left| \frac{1}{2} \lim_{n \to \infty} \left| \frac{x^{2}}{(n+1)^{2}} \right| \right|$$

$$\int \left(\frac{\chi^{2n+2}}{(n+1)!} \right) \left(\frac{n!}{\chi^{2n}} \right)$$

$$=\lim_{n\to\infty}\left|\frac{(\chi^{2n})(\chi^{2})}{(n+1)(n!)}\left(\frac{n!}{\chi^{2n}}\right)\right|=\lim_{n\to\infty}\left|\frac{\chi^{2}}{n+1}\right|=0<1$$

$$\left(\frac{1}{2n}\right) =$$

$$\left|\frac{x^2}{n+1}\right| = 0 < 1$$

Interval of convergence:
$$I = (-\infty, \infty)$$

$$22) \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} (x-1)^n \qquad a_n = \frac{(-1)^n}{(2n-1)2^n} (x-1)^n = \frac{(-1)^n(x-1)^n}{(2n-1)2^n}$$

$$Q_{n+1} = \frac{(-1)^{n+1}}{(2(n+1)-1)2^{n+1}} \left(x-1\right)^{n+1} = \frac{(-1)^{n}(1)(x-1)^{n}(x-1)^{1}}{(2n+1)(2^{n})(2^{1})}$$

$$\lim_{n \to \infty} \left| \frac{Q_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty}$$

$$\lim_{n \to \infty} \frac{\left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \frac{\left| \frac{(-1)^n (-1)^l (x-1)^n}{(2n+1)(2^n)(2^l)} \right|}{\frac{(-1)^n (x-1)^n}{(2n-1)^2}} = \lim_{n \to \infty} \frac{\left| \frac{(-1)^n (-1)^l (x-1)^n}{(2n+1)(2^n)(2^l)} \right|}{\frac{(-1)^n (x-1)^n}{(2n-1)^2}}$$

$$=\lim_{n\to\infty}\left|\left(\frac{\left(-1\right)^{n}\left(-1\right)^{\prime}\left(x-1\right)^{n}\left(x-1\right)^{\prime}}{\left(2n+1\right)\left(2^{n}\right)\left(2^{\prime}\right)}\right)\frac{\left(2n-1\right)2^{n}}{\left(-1\right)^{n}\left(x-1\right)^{n}}\right|$$

$$= \lim_{n \to \infty} \frac{(-1)(2n-1)(x)}{2(2n+1)}$$

$$= \lim_{n \to \infty} \left| \frac{2n}{2nt} \right|$$

$$=\lim_{n\to\infty}\left|\frac{(-1)(2n-1)(x-1)}{2(2n+1)}\right|=\lim_{n\to\infty}\left|\frac{2n-1}{2n+1}\frac{x-1}{2}\right|=\lim_{n\to\infty}\left|\frac{2}{2}\frac{x-1}{2}\right|$$

$$\left|\frac{x-1}{2}\right| = \left|\frac{x-1}{2}\right| = \frac{\left|x-1\right|}{2}$$

$$=\lim_{n\to\infty}\left|\frac{x-1}{2}\right|=\left|\frac{x-1}{2}\right|=\frac{|x-1|}{2}\to\frac{|x-1|}{2}<|\to|x-1|<2$$

When
$$3C=-1$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} ((-1)-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} (-2)^n = \sum_{n=7}^{\infty} \frac{1}{2n-1}$

11,8/n 22) continued... let $\ell(x) = \frac{1}{2\pi - 1}$ for $x \ge 1$ 1 l(x) is continuous E l(x) is positive 3) {(x) is decreasing as x increases $\int_{1}^{\infty} \frac{1}{2x-1} dx = \dim \int_{0}^{\infty} \frac{1}{2x-1} dx = \dim \left[\frac{1}{2} \ln \left(2x-1 \right) + C \right]_{0}^{\infty}$ = $\lim_{\nu \to \infty} \left\{ \left[\frac{1}{z} \ln \left| 2\nu - 1 \right| + C \right] - \left[\frac{1}{z} \ln \left| 2(1) - 1 \right| + C \right] \right\} = +\infty$ by the Integral Test, diverges when x = 1 When x = 3, $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} ((3)-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} (2)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)}$ $d_n = \left| \frac{(-1)^n}{2n-1} \right| = \frac{1}{2n-1}$ for $n \ge 1$ $d_n = \frac{1}{2n-1} > 0$ $\frac{1}{2n-1} = b_n > b_{n+1} = \frac{1}{2(n+1)-1} \quad \{b_n\} \text{ is decreasing}$ $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{2n-1} = 0$ by the alternate Series Test, converges when z=3 Interval of convergence; I = (-1,3] $24) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^n} \left(x+6\right)^n \qquad \alpha_n = \frac{\sqrt{n}}{8^n} \left(x+6\right)^n = \frac{\sqrt{n} \left(x+6\right)^n}{8^n}$ $a_{n+1} = \frac{\sqrt{n+1}}{8^{n+1}} (x+6)^{n+1} = \frac{\sqrt{n+1} (x+6)^n (x+6)^l}{(8^n)(8^l)}$

Ratio Test

$$\lim_{n\to\infty} \frac{\left| a_{n+1} \right|}{\alpha_n} = \lim_{n\to\infty} \frac{\left| \frac{\sqrt{n+1} \left(x+6 \right)^n \left(x+6 \right)}{\left(8^n \right) \left(8^1 \right)} \right|}{\sqrt{n} \left(x+6 \right)^n}$$

$$=\lim_{n\to\infty}\left|\left(\frac{\sqrt{n+1}\left(x+6\right)^{n}\left(x+6\right)'}{\left(8^{n}\right)\left(8^{i}\right)}\right)\left(\frac{8^{n}}{\sqrt{n}\left(x+6\right)^{n}}\right)\right|=\lim_{n\to\infty}\left|\frac{\sqrt{n+1}\left(x+6\right)}{8\sqrt{n}}\right|$$

$$=\lim_{n\to\infty}\left|\sqrt{\frac{n+1}{n}}\frac{x+6}{8}\right|=\lim_{n\to\infty}\left|\sqrt{\frac{n+1}{n}}\frac{x+6}{8}\right|=\lim_{n\to\infty}\left|\sqrt{\frac{1+\frac{1}{n}}{8}}\frac{x+6}{8}\right|$$

$$= \left| \sqrt{\frac{1+6}{8}} \frac{x+6}{8} \right| = \left| \frac{x+6}{8} \right| = \frac{|x+6|}{8} \to \frac{|x+6|}{8} < | \to |x+6| < 8$$

-8<×+6<8 -14< x<2 radius of convergence: R=8

When
$$2=2$$
, $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^n} (2)+6)^n = \sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^n} (8^n) = \sum_{n=1}^{\infty} \sqrt{n} c_n = \sqrt{n}$

lin c = din Tn = +00

lin on = lin (-1)" In D.N.E.,
n>20 the Test for Shivergence, diverges for when x=2 and x=-14

Interval of convergence; I= (-14, 2)

When x = -2 $\sum_{n=1}^{\infty} \frac{(2(-2)-1)^n}{5^n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-5)^n}{5^n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \int_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} dn = \int_{n=1}^{\infty} \frac{($ for $n \ge 1$, $b_n = \frac{1}{\sqrt{n}} > 0$, $\frac{1}{\sqrt{n}} = b_n > b_{n+1} = \frac{1}{\sqrt{n+1}} \{b_n\}$ is decreasing lin b= lin = 0

by the alternative Series Test, converges when x=-z Interval of convergence: I= [-2,3)

28)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} \times^n$$
 $a_n = \frac{(-1)^n}{n \ln n} \times^n$ $a_{m+1} = \frac{(-1)^{n+1}}{(n+1) \ln (n+1)} \times^{n+1}$

Plate Lest

 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(-1)^{n+1}}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{(-1)^{n+1}}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{(-1)^n}{(n+1) \ln (n+1)} \cdot \frac{n \ln n}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{(-1)^n}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{(-1)^n}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{(-1)^n}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{n \ln n}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{(-1)^n}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{n \ln n}{(n+1)} \cdot \lim_{n \to \infty} \frac{n \ln n}{(n+1)} \cdot \lim_{n \to \infty} \frac{n \ln n}{(n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} \cdot \lim_{n \to \infty} \frac{1}{(n+1) \ln (n+1)} = \lim$

11.8/15

when
$$x = 1$$
, $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \cdot l_{nn}} (1)^n = \sum_{n=2}^{\infty} \frac{(-1)^n}{n \cdot l_{nn}} C_n = \frac{(-1)^n}{n \cdot l_{nn}} b_n = |c_n| = \frac{1}{n \cdot l_{nn}}$
for $n \ge 2$, $b_n = \frac{1}{n \cdot l_{nn}} > 0$ $\frac{1}{n \cdot l_{nn}} = b_n > b_{n+1} = \frac{1}{(n+1) \cdot l_n(n+1)}$
 $\{b_n\}$ is decreasing $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n \cdot l_{nn}} = 0$
by the alternating Leries Jest, converges when $x = 1$
Interval of convergence; $I = (-1, 1]$

30)
$$\frac{z}{\ln x} \frac{b^{n}}{\ln x} (x-a)^{n}$$
 $b > 0$ $a_{n} = \frac{b^{n} (x-a)^{n}}{\ln n} a_{n+1} = \frac{b^{n+1} (x-a)^{n+1}}{\ln (n+1)}$

Ratio Lest

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{b^{n+1} (x-a)^{n+1}}{\ln (n+1)} = \lim_{n \to \infty} \left| \frac{b^{n+1} (x-a)^{n+1}}{\ln (n+1)} \right| \left(\frac{b^{n}}{b^n (x-a)^n} \right)$$

$$= \lim_{n \to \infty} \left| \frac{(b^n)(b^1)(x-a)^n (x-a)^n}{\ln (n+1)} \right| \left(\frac{b^n}{b^n (x-a)^n} \right) = \lim_{n \to \infty} \left| \frac{b(x-a)(\ln n)}{\ln (n+1)} \right|$$

see ex, 28

$$= \left| b(x-a)(1) \right| = b\left| x-a \right| \longrightarrow b\left| x-a \right| < 1 \longrightarrow \left| x-a \right| < \frac{1}{b}$$

$$\text{Nodices of convergence: } R = \frac{1}{b} \qquad \frac{-1}{b} < x-a < \frac{1}{b}$$

$$\alpha - \frac{1}{b} < x < a + \frac{1}{b}$$

When
$$x = a + \frac{1}{b}$$
, $\sum_{n=2}^{\infty} \frac{b^n}{d_{mn}} \left(\left(a + \frac{1}{b} \right) - a \right)^n = \sum_{n=2}^{\infty} \frac{b^n}{d_{nn}} \left(\frac{1}{b} \right)^n = \sum_{n=2}^{\infty} \frac{1}{d_{nn}}$

for $n \ge 2$, $d_{nn} < n$ so $\frac{1}{d_{nn}} > \frac{1}{n} \Rightarrow \sum_{n=2}^{\infty} \frac{1}{d_{nn}} > \sum_{n=2}^{\infty} \frac{1}{n}$

11.8/16

 $\sum_{n=2}^{\infty} \frac{1}{n} \text{ is a p-series (partial) with p=$|$$< $|$ which diverges by the Shired Comparison Lest, diverges when z=a+$\frac{1}{b}$ when x=a-$\frac{1}{b}$, $\sum_{n=2}^{\infty} \frac{b^n}{lnn} \left((a-\frac{1}{a}) - a \right)^n = \frac{\infty}{lnn} \left(-\frac{1}{a} \right)^n = \frac$

32)
$$\sum_{n=1}^{\infty} \frac{n^2 x^n}{(2)(4)(6)(1)(2n)}$$

$$Q_{n} = \frac{n^{2} x^{n}}{(z)(4)(6)!!!} = \frac{n^{2} x^{n}}{(z(1))(z(2))(z(3))!!!} = \frac{n^{2} x^{n}}{2^{n} n!} = \frac{n^{2} x^{n}}{2^{n} (n)(m!)!!}$$

$$a_{n} = \frac{n \times^{n}}{2^{n} (n-1)!} \qquad a_{n+1} = \frac{(n+1) \times^{n+1}}{2^{n+1} ((n+1)-1)!} = \frac{(n+1) \times^{n+1}}{2^{n+1} n!}$$

Ratio Test

$$\lim_{n \to \infty} \frac{\left| \frac{\Omega_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)x^{n+1}}{2^{n+1}n!} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{2^n(n-1)!} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1$$

$$=\lim_{n\to\infty}\left|\frac{(n+1)(x^n)(x')}{(2^n)(2^i)(n)(n-1)!}\left(\frac{2^n(n-1)!}{n\times n}\right)\right|=\lim_{n\to\infty}\left|\frac{(n+1)(x)}{2(n)(n)}\right|$$

$$= \lim_{n \to \infty} \left| \left(\frac{n+1}{n^2} \right) \frac{\chi}{2} \right| = \lim_{n \to \infty} \left| \left(\frac{\frac{n}{n^2} + \frac{1}{n^2}}{n^2} \right) \frac{\chi}{2} \right| = \lim_{n \to \infty} \left| \left(\frac{\frac{1}{n} + \frac{1}{n^2}}{n} \right) \frac{\chi}{2} \right|$$

=
$$\left| \left(\frac{0+0}{1} \right) \frac{x}{z} \right| = 0 < 1$$
 "true statement for allx"

radius of convergence: $R = \infty$ Interval of convergence: $I = (-\infty, \infty)$

$$34) \sum_{n=2}^{\infty} \frac{x^{2n}}{n(\ln n)^2} \qquad \alpha_n = \frac{x^{2n}}{n(\ln n)^2} \qquad \alpha_{n+1} = \frac{x^{2(n+1)}}{(n+1)(\ln (n+1))^2}$$

Ratio Test

$$\lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \frac{\frac{z(n+1)}{(n+1)(\ln(n+1))^2}}{\frac{z^{2n}}{n(\ln n)^2}} = \lim_{n \to \infty} \left| \frac{z^{2n+2}}{(n+1)(\ln(n+1))^2} \right| \frac{|\alpha_n|^2}{|\alpha_n|^2}$$

$$=\lim_{n\to\infty}\left|\frac{\left(\chi^{2n}\right)\left(\chi^{2}\right)}{\left(n+1\right)\left(\ln\left(n+1\right)\right)^{2}}\left(\frac{n\left(\ln n\right)^{2}}{\chi^{2n}}\right)\right|=\lim_{n\to\infty}\left|\frac{\chi^{2}n\left(\ln n\right)^{2}}{\left(n+1\right)\left(\ln\left(n+1\right)\right)^{2}}\right|$$

$$=\lim_{n\to\infty}\left|\chi^2\left(\frac{n}{n+1}\right)\left(\frac{\ln n}{\ln (n+1)}\right)^2\right|=\left|\lim_{n\to\infty}\chi^2\right|\left|\lim_{n\to\infty}\frac{n}{n+1}\right|\left(\lim_{n\to\infty}\frac{\ln n}{\ln (n+1)}\right)$$

see ex 28 see ex 28

$$= x^2 / 1 / (1) = x^2 \rightarrow x^2 / \implies |x/c/ \rightarrow -1 < x < |$$

radius of convergence: R=1

When x=1, $x^{2n}=(1)^{2n}=1$ and x=-1, $x^{2n}=(-1)^{2n}=((-1)^2)^{\frac{n}{2}}(1)^{\frac{n}{2}}=1$

 $\sum_{n=2}^{\infty} \frac{\left(\pm 1\right)^{2n}}{n \left(\ln n\right)^{2}} = \sum_{n=2}^{\infty} \frac{1}{n \left(\ln n\right)^{2}} \qquad \text{let } l(x) = \frac{1}{\varkappa \left(\ln \varkappa\right)^{2}}$

 $foo x \ge 2$ O(x) is continuous

@ f(x) is positive

3 ((x) is decreasing as x increases

 $\int \frac{1}{x \left(\ln x \right)^2} dx = \int \frac{1}{\left(\ln x \right)^2} \left(\frac{1}{x} dx \right) = \int \frac{1}{p^2} dp = \int p^{-2} dp$

 $\int_{2}^{\infty} \frac{1}{x (\ln x)^{2}} dx = \lim_{\nu \to \infty} \int_{2}^{\nu} \frac{1}{x (\ln x)^{2}} dx = \lim_{\nu \to \infty} \left[\frac{-1}{\ln x} + C \right]_{2}^{\nu}$

 $= \lim_{v \to \infty} \left\{ \left[\frac{-1}{\ln v} + C \right] - \left[\frac{-1}{\ln (z)} + C \right] \right\} = \left[0 \right] - \left[\frac{-1}{\ln z} \right] = \frac{1}{\ln z}$

by the Integral Test, converges when $x = \pm 1$

Interval of convergence: I = [-1,1]

36) $\frac{\infty}{\sum_{n=1}^{\infty} \frac{n! \, x^n}{(1)(3)(5) \cdots (2n-1)}} \qquad a_n = \frac{n! \, x^n}{(1)(3)(5) \cdots (2n-1)}$

 $a_{n+1} = \frac{(n+1)! \times ^{n+1}}{(1)(3)(5)! (2n-1)(2(n+1)=1)} = \frac{(n+1)! \times ^{n+1}}{(1)(3)(5)! (2n-1)(2n+1)}$

Ratio Test

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(1)(3)(5)!!!} \frac{(2n-1)(2n+1)}{(2n-1)!}}{\frac{n!}{(1)(3)(5)!!!} \frac{(2n-1)}{(2n-1)!}}$$

$$=\lim_{n\to\infty}\left|\frac{(n+1)! \times^{n+1}}{(1)(3)(5)! (2n-1)(2n+1)}\right| \frac{(1)(3)(5)! (2n-1)}{n! \times^n}\right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)(n!)(x^n)(3e!)}{(1)(3)(5)\cdots(2n-1)(2n+1)} \right| \frac{(1)(3)(5)\cdots(2n-1)}{n!x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)(x)}{2n+1} \right| = \lim_{n \to \infty} \left| \left(\frac{n+1}{2n+1} \right) \right| \propto \left| \frac{1}{2n+1} \right| \propto \left| \frac{1}{2n+1$$

$$= \left| \frac{1}{2} x \right| = \frac{1}{2} |x| \rightarrow \frac{1}{2} |x| < 1 \rightarrow |x| < 2 \rightarrow -2 < x < 2$$

radius of convergence; R = 2

when
$$x = 2$$
, $\sum_{n=1}^{\infty} \frac{n!(2)^n}{(1)(3)(5)!...(2n-1)}$ $b_n = \frac{n!(2)^n}{(1)(3)(5)!...(2n-1)}$

when
$$x=-2$$
, $\sum_{n=1}^{\infty} \frac{n!(-2)^n}{(1)(3)(5)^m(2n-1)}$ $Q_n = \frac{n!(-2)^n}{(1)/3)(5)^m(2n-1)}$

$$d_{n} = \left| a_{n} \right| = \frac{n! (z)^{n}}{(1)(3)(5) \cdot (2n-1)} = \frac{\left\{ (1)(2)(3) \cdot ((n))(2)^{n} \right\}}{(1)(3)(5) \cdot (2n-1)}$$

n-value

$$=\frac{(2)(4)(6)(1)(2n)}{(1)(3)(5)(1)(2n-1)}$$
 | lach values of numeration is larger than corresponding

lin $b_n = +\infty$ $n > \infty$ less on denominator

less the lest for livergence, diverges when x = -2 and x = 2; determination I = (-2, 2)