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Glossary

Attractor An invariant subset for a dynamical system such that points
sufficiently close to the set remain close and approach the set in the
limit as time tends to infinity.

Dynamical System A model for the motion of a system through
time. The time variable is either discrete, varying over the integers, or
continuous, taking real values. Our systems are deterministic, rather
than stochastic, so the the future states of the system are functions of
the past.

Equilibrium An equilibrium, or a fixed point, is a point which remains
at rest for all time.

Invariant Set A subset is invariant if the orbit of each point of the
set remains in the set at all times, both positive and negative. The set
is + invariant, or forward invariant, if the forward orbit of each such
point remains in the set.

Lyapunov Function A continuous, real-valued function on the state
space is a Lyapunov function when it is non-decreasing on each orbit
as time moves forward.

Orbit The orbit of an initial position is the set of points through which
the system moves as time varies positively and negatively through all
values. The forward orbit is the subset associated with positive times.

Recurrence A point is recurrent if it is in its own future. Different
concepts of recurrence are obtained from different interpretations of
this vague description.

Repellor A repellor is an attractor for the reverse system obtained by
changing the sign of the time variable.

Transitivity A system is transitive if every point is in the future of
every other point. Periodicity, minimality, topological transitivity and
chain transitivity are different concepts of transitivity obtained from
different interpretations of this vague description.
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1 Introduction and History

The many branches of dynamical systems theory are outgrowths of the study
of differential equations and their applications to physics, especially celestial
mechanics. The classical subject of ordinary differential equations remains
active as a topic in analysis, see, e. g. the older texts Coddington and
Levinson [28] and Hartman [39] as well as Murdock [51]. One can observe
the distinct fields of differentiable dynamics, measurable dynamics (that is,
ergodic theory) and topological dynamics all emerging in the work of Poincaré
on the Three Body Problem(for a history, see Barrow-Green [23]).

The transition from the differential equations to the dynamical systems
viewpoint can be seen in the two parts of the great book Nemitskii and
Stepanov [53]. We can illustrate the difference by considering the initial
value problem in ordinary differential equations:

dx

dt
= ξ(x)

x(0) = p.
(1.1)

Here x is a vector variable in a Euclidean space X = Rn or in a manifold X,
and the initial point p lies in X. The infinitesimal change ξ(x) is thought of
as a vector attached to the point x so that ξ is a vector field on X.

The associated solution path is the function φ such that as time t varies,
x = φ(t, p) moves in X according to the above equation and with p = φ(0, p)
so that p is associated with the initial time t = 0. The solution is a curve
in the space X along which x moves beginning at the point p. A theorem of
differential equations asserts that the function φ exists and is unique, given
mild smoothness conditions, e. g. Lipschitz conditions, on the function ξ.

Because the equation is autonomous, i. e. ξ may vary with x, but is
assumed independent of t, the solutions satisfy the following semigroup iden-
tities, sometimes also called the Kolmogorov equations :

φ(t, φ(s, p)) = φ(t + s, p). (1.2)

Suppose we solve equation (1.1), beginning at p, and after s units of time,
we arrive at q = φ(s, p). If we again solve the equation, beginning now at
q, then the identity (1.2) says that we continue to move along the old curve
at the same speed. Thus, after t units of time we are where we would have
been on the old solution at the same time, t + s units after time 0.
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The initial point p is a parameter here. For each solution path it remains
constant, the fixed base point of the path. The solution path based at p is
also called the orbit of p when we want to emphasize the role of the initial
point. It follows from the semigroup identities that distinct solution curves,
regarded as subsets of X, do not intersect and so X is subdivided, foliated,
by these curves. Changing p may shift us from one curve to another, but the
motion given by the original differential equation is always on one of these
curves.

The gestalt switch to the dynamical systems viewpoint occurs when we
reverse the emphasis between t and p. Above we thought of p as a fixed
parameter and t as the time variable along the solution path. Instead, we
now think of the initial point, relabeled x, as our variable and the time value
as the parameter.

For each fixed t value we define the time-t map φt : X → X by φt(x) =
φ(t, x). For each point x ∈ X we ask whither it has moved in t units of
time. The function φ : T ×X → X is called the flow of the system and the
semigroup identities can be rewritten:

φt ◦ φs = φt+s for all t, s ∈ T. (1.3)

These simply say that the association t 7→ φt is a group homomorphism from
the additive group T of real numbers to the automorphism group of X. In
particular, observe that the time-0 map φ0 is the identity map 1X .

We originally obtained the flow φ by solving a differential equation. This
requires differentiable structure on the underlying space which is why we
specified that X be a Euclidean space or a manifold. The automorphism
group is then the group of diffeomorphisms on X.

For the subject of topological dynamics we begin with a flow, a continuous
map φ subject to the condition (1.3). In modern parlance a flow is just a
continuous group action of the group T of additive reals on the topological
space X. The automorphism group is the group of homeomorphisms on X.
If we replace the group of reals by letting T be the group of integers then
the action is entirely determined by the generator f =def φ1, the time 1
homeomorphism with φn obtained by iterating f n times if n is positive and
iterating the inverse f−1 |n| times if n is negative.

Above I mentioned the requirement that the vector field ξ be smooth in
order that the flow function φ be defined. However, I neglected to point out
that in the absence of some sort of boundedness condition the solution path
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might go to infinity in a finite time. In such a case the function φ would not be
defined on the entire domain T ×X but only on some open subset containing
{0} × X. The problems related to this issue are handled in the general
theory by assuming that the space X is compact. Of course, Euclidean space
is only locally compact. In applying the general theory to systems on a
noncompact space one usually restricts to some compact invariant subset
or else compactifies, i. e. embeds the system in one on a larger, compact
space. Already in Nemytskii and Stepanov [53] much attention is devoted
to conditions so that a solution path has a compact closure, see also Bahtia
and Szego [27].

As topological dynamics has matured the theory has been extended to
cover the action of more general topological groups T , usually countable and
discrete, or locally compact, or Polish (admits a complete, separable metric).
This was already emphasized in the first treatise which explicitly concerned
topological dynamics, Gottschalk and Hedlund [38].

In differentiable dynamics we return to the case where the space X is a
manifold and the flow is smooth. The breadth and depth of the results then
obtained make it much more than a subfield of topological dynamics, see, for
example, Katok and Hasselblatt [45]. For measurable dynamics we weaken
the assumption of continuity to mere measurability but assume that the
space carries a measure invariant with respect to the flow, see, for example,
Peterson [55] and Rudolph [57]. The measurable and topological theories are
especially closely linked with a number of parallel results, see Glasner [36] as
well as Alpern and Prasad [12]. The reader should also take note of Oxtoby
[54], a beautiful little book which explicitly describes this parallelism using
a great variety of applications.

The current relationship between topological dynamics and dynamical
systems theory in general is best understood by analogy with that between
point-set, or general, topology and analysis.

General topology proper, even excluding algebraic topology and homo-
topy theory, is a large specialty with a rich history and considerable cur-
rent research (for some representative surveys see the Russian Encyclopedia
volumes [13],[14] and [15]). But much of this work is little known to non-
specialists. On the other hand, the fundamentals of point-set topology are
part of the foundation upon which modern analysis is built. Compactness
was a rather new idea when it was used by Jesse Douglas in his solution of
the Plateau Problem, Douglas [32] (see Almgren [11]). Nowadays continuity,
compactness and connectedness are in the vocabulary of every analyst. In
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addition, there recur unexpected applications of hitherto specialized topics.
For example, indecomposable continua, examined by Bing and his students,
see Bing [25], are now widely recognized and used in the study of strange
attractors, see Brown [26].

Similarly, the area of topological dynamics proper is large and some of
the more technical results have found application. We will touch on some
of these in the end, but for the most part this article will concentrate on
those basic aspects which provide a foundation for dynamical systems theory
in general. We will focus on chain recurrence and the theory of attractors,
following the exposition of Akin [1] and Akin, Hurley and Kennedy [8]).

To describe what we want to look for, let us begin with the simplest
qualitative situation: the differential equation model (1.1) where the vector
field ξ is the gradient of some smooth real-valued potential function U on X.
Think of X as the Euclidean plane and the graph of U as a surface in space
over X. The motion in X can be visualized on the surface above. On the
surface it is always upward, perpendicular to the contour curves of constant
height. For simplicity we will assume that U has isolated critical points.
These critical points: local maxima, minima and saddles, are equilibria for
the system, points at which the the gradient field ξ vanishes. We observe
two kinds of behavior. The orbit of a critical point is constant, resting at
equilibrium. The other kind exhibits what engineers call transient behavior.
A non-equilibrium solution path moves asymptotically toward a critical point
(or towards infinity). As it approaches its limit, the motion slows, becoming
imperceptible, indistinguishable from rest at the limit point. The set of
points whose orbits tend to a particular critical point e is called the stable
set for e.

Each local maximum e is an attractor or sink. The stable set for e is an
open set containing e which is called the domain of attraction for e. Such a
state is called asymptotically stable illustrated by the rest state of a cone on
its base.

The local minima are repellors or sources which are attractors for the
system with time reversed. Solution paths near a repellor move away from
it. The stable set for a repellor e consists of e alone. Consider a cone balanced
on its point.

A saddle point between two local maxima is like the highest point of a
pass between two mountains. Separating the domains of attraction for the
two peaks are solution paths which have limit the saddle point equilibrium.

There is a kind of knife, used for cutting bread dough, which has a semi-
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circular blade. The saddle point equilibrium is a state like this knife balanced
on the midpoint of its blade. A slight perturbation will cause it to fall down
on one side or the other. But if you start the knife balanced elsewhere along
its blade there remains the possibility - not achievable in practice- of its
rolling back along the blade toward balance at the midpoint equilibrium.
Notice that these are first-order systems with no momentum. Imagine every-
thing going on in thick, clear molasses. As this model illustrates, it is usually
true that the stable set of a saddle point is a lower dimensional set in X and
the union of the domains of attraction of the local maxima is a dense open
subset of X.

There do exist examples where the stable set of a saddle has nonempty
interior. This is a pathology which we will hope to exclude by imposing
various conditions. For example, the potential function U is called a Morse
function when all of its critical points are nondegenerate. That is, the Hes-
sian matrix of second partials is nonsingular at each critical point. For the
gradient system of a Morse function each equilibrium is of a type called hy-
perbolic. For the saddle points of such a system the stable sets are manifolds
of lower dimension.

From the cone example, we omitted what physicists call neutral stability,
the cone resting on its side. From our point of view this is another sort of
pathology: an infinite, connected set of equilibria. Each of these equilibria
is stable but not asymptotically stable. If we perturb the cone by lifting
its point and turning it a bit, then it drops back toward an equilibrium
near to but not necessarily identical with the original state (Remember, no
momentum).

We obtain a similar classification into sinks, saddles, etc. and comple-
mentary transient behavior when we remove the assumption that the system
comes from the gradient of U and retain only the condition that U increases
along nonequilibrium solution paths. The function U is then called a strict
Lyapunov function for the system. Instead of the steepest path ascent of a
mountain goat, we may observe the spiralling upward of a car on a mountain
road.

However, these gradient-like systems are too simple to represent a typical
dynamical system. Lacking is the general behavior complementary to tran-
sience, namely recurrence. A point is recurrent - in some sense - if it is “in its
own future” - in the appropriate sense. Beyond equilibrium the simplest kind
of recurrence occurs on a periodic orbit. A periodic orbit returns infinitely
often to each point on the orbit. As we will see, there are increasingly broad
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concepts of recurrence obtained by extending the notion of the “future” of
a point. Clearly, a real-valued function cannot be strictly increasing along a
periodic orbit. When we consider Lyapunov functions in general we will see
that they remain constant along the orbit of each recurrent point.

Nonetheless, the picture we are looking for can be related to the gradient
landscape by replacing the critical points by blobs of various sizes. Each blob
is a closed, invariant set of a special type. A subset A is an invariant set
for the system when A contains the entire orbit of each of its points. The
special condition on each blob A which replaces an equilibrium is a kind of
transitivity. This means that if p and q are points of A then each point is in
the “future” of the other and so, in particular, each point is recurrent in the
appropriate sense. Here again it remains to provide a meaning - or actually
several different meanings - for this vague notion of “future”.

In this more general situation the transient orbits need not converge to a
point. Instead, each accumulates on a closed subset of one of these blobs. If
there are only finitely many of the blobs then there is a classification of them
as attractor, repellor, or saddle analogous to the description for equilibria in
the gradient system.

Within each blob the motion may be quite complicated. It is in attempt-
ing to describe such motions that the concept of chaos arises.

For some applied fields this sort of thinking is relatively new. When I
learned population genetics - admittedly that was over thirty years ago - most
of the analysis consisted of identifying and classifying the equilibria, tricky
enough in several variables. This is perfectly appropriate for gradient-like
systems and is a good first step in any case. However, it has become apparent
that more complicated recurrence may occur and so requires attention.

While most applications use differential equations and the associated
flows, it is more convenient to develop the discrete time theory and then
to derive from it the results for flows. In what follows we will describe the
results for a cascade, a homeomorphism f on a compact metric space X with
the dynamics introduced by iteration. Focusing on this case, we will not
discuss further real flows or noninvertible functions, and we will omit as well
the extensions to noncompact state spaces and to compact, non-metrizable
spaces.
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2 Dynamic Relations, Invariant Sets

and Lyapunov Functions

It is convenient to assume that our state spaces are nonempty and metrizable.
It is essential to assume that they are compact. Recall that if A is a subset of
a compact metric space X then A is closed if and only if it is compact. Also,
the continuous image of a compact set is compact and so for continuous maps
between compact metric spaces the image of a closed set is closed. Perhaps
less familiar are the following important results:

Proposition 2.1 Let X be a compact metric space and {An} be a decreasing
sequence of closed subsets of X with intersection A.

(a) If U is an open subset of X with A ⊆ U then for sufficiently large n,
An ⊆ U .

(b) If An is nonempty for every n, then the intersection A is nonempty.

(c) If h : X → Y is a continuous map with Y a metric space then

⋂
n

h(An) = h(A). (2.1)

Proof: (a): We are assuming An+1 ⊆ An for all n and A =
⋂

n An. The
complementary open sets Vn = X \ An are increasing and, together with U ,
they cover X. By compactness, {U, V1, ...., VN} covers X for some N and
so {U, VN} suffice to cover X. Hence, AN is a subset of U as is An for any
n ≥ N .

(b): If A is empty then U = ∅ is an open set containing A and so by (a),
An is empty for sufficiently large n.

(c): Since A ⊆ An for all n, it is clear that h(A) is contained in
⋂

n h(An).
On the other hand, if y is a point of the latter intersection then {h−1(y)∩An}
is a decreasing sequence of nonempty compact sets. By (b) the intersection
h−1(y) ∩ A is nonempty. QED

If {Bn} is any sequence of closed subsets of X then we define the Lim
sup :

Limsupn Bn =def

⋂
n

⋃

k≥n

Bk (2.2)
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where Q denotes the closure of Q. It follows from (b) above that the Lim
sup of a sequence of nonempty sets is nonempty. It is easy to check that

⋃
n

Bn = (
⋃
n

Bn) ∪ (Limsupn Bn). (2.3)

We want to study a homeomorphism on a space. By compactness this is
just a bijective (= one-to-one and onto) continuous function from the space
to itself. It will be convenient to use the more general language of relations.

A function f : X → Y is usually described as a rule associating to every
point x in X a unique point y = f(x) in Y . In set theory the function f
is defined to be the set of ordered pairs {(x, f(x)) : x ∈ X}. Thus, the
function f is a subset of the product X × Y . It is what other people call the
graph of the function. We will use this language so that, for example, the
identity map 1X on X is the diagonal subset {(x, x) : x ∈ X}. The notation
is extended by defining a relation from X to Y , written F : X → Y , to be an
arbitrary subset of X ×Y . Then F (x) = {y : (x, y) ∈ F}. Thus, a relation is
a function exactly when the set F (x) contains a single point for every x ∈ X.
In the function case, we will use the symbol F (x) for both the set and the
single point it contains, the latter being the usual meaning of F (x).

As they are arbitrary subsets of X × Y we can perform set operations
like union, intersection, closure and interior on relations. In addition, for
F : X → Y we define the inverse F−1 : Y → X by

F−1 =def {(y, x) : (x, y) ∈ F}. (2.4)

If A ⊆ X then its image is

F (A) =def {y : (x, y) ∈ F for some x ∈ A}
=

⋃
x∈A

F (x) = π2((A× Y ) ∩ F ), (2.5)

where π2 : X × Y → Y is the projection to the second coordinate. It follows
that if B ⊆ Y then

F−1(B) = {x : F (x) ∩B 6= ∅},
X \ F−1(Y \B) = {x : F (x) ⊆ B}. (2.6)

These two sets are usually different but they agree when F is a function.
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If G : Y → Z is another relation then the composition G ◦ F : X → Z is
the relation given by

G ◦ F =def {(x, z) : there exists y ∈ Y

such that (x, y) ∈ F and (y, z) ∈ G}
= π13((X ×G) ∩ (F × Z)),

(2.7)

where π13 : X × Y × Z → X × Z is the projection map. This generalizes
composition of functions and, as with functions, composition is associative.
Clearly, (G ◦ F )−1 = F−1 ◦G−1.

We call F a closed relation when it is a closed subset of X × Y . Clearly,
the inverse of a closed relation is closed and by compactness, the composition
of closed relations is closed. If A is a closed subset of X and F is a closed
relation then the image F (A) is a closed subset of Y . It follows from (2.6)
that if B is an open subset of Y then {x ∈ X : F (x) ⊆ B} is an open subset
of X. Thus, for relations being closed is analogous to being continuous for
functions. In fact, a function is continuous if and only if, regarded as a
relation, it is closed. This is another application of compactness.

If Y = X, so that F : X → X, then we call F a relation on X. For
a positive integer n we define F n to be the n-fold composition of F with
F 0 =def 1X and F−n =def (F−1)n = (F n)−1. This is well-defined because
composition is associative. Clearly, Fm ◦F n = Fm+n when m and n have the
same sign, i.e. when mn ≥ 0. On the other hand, the equations F ◦ F−1 =
F−1◦F = 1X = F 0 all hold if and only if the relation F is a bijective function.

The utility of this relation-speak, once one gets used to it, is that it allows
us to extend to this more general situation our intuitions about a function
as a way of moving from input here to output there. For example, if ε ≥ 0
then we can use the metric d on X to define the relations on X

Vε =def {(x, y) : d(x, y) < ε},
V̄ε =def {(x, y) : d(x, y) ≤ ε}. (2.8)

Thus, Vε(x) and V̄ε(x) are the open ball and the closed ball centered at x
with radius ε. We can think of these relations as ways of moving from a point
x to a nearby point.

Each V̄ε is a closed, symmetric and reflexive relation. The triangle in-
equality is equivalent to the inclusion V̄ε ◦ V̄δ ⊆ V̄ε+δ.

In general, a relation F on X is reflexive if 1X ⊆ F , symmetric if F−1 = F
and transitive if F ◦ F ⊆ F .
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Now we apply this relation notation to a homeomorphism f on X.
For x ∈ X the orbit sequence of x is the bi-infinite sequence

{..., f−2(x), f−1(x), x, f(x), f 2(x), ...}. This is just the discrete time analogue
of the solution path discussed in Section 1. We are thinking of it as a sequence
and so as a function from the set Z of discrete times to the state space X
with parameter the initial point x.

Now we define the orbit relation

Of =def

∞⋃
n=1

fn. (2.9)

Thus, Of(x) = {f(x), f 2(x), ...} is a set, not a sequence, consisting of the
states which follow the initial point x in time. Notice that for reasons which
will be clear when we consider the cyclic sets below, we begin the union with
n = 1 rather than n = 0 and so the initial point x itself need not be included
in Of(x).

If with think of the point f(x) as the immediate temporal successor of x
then Of(x) is the set of points which occur on the orbit of x at some positive
time. This is the first -and simplest- interpretation of the “future” of x with
respect to the dynamical system obtained by iterating f .

It is convenient to extend this notion by including the limit points of the
positive orbit sequence. For x ∈ X define

ωf(x) = Limsupn {fn(x)},
Rf(x) =def Of(x) = Of(x) ∪ ωf(x).

(2.10)

Thus, from f we have defined the orbit relation Of and the orbit closure
relation Rf with Rf = Of ∪ ωf .

While Rf(x) is closed for each x, the relation Rf itself is usually not
closed. As was mentioned above, among relations the closed relations are the
analogues of continuous functions. We obtain closed relations by defining

Ωf = Limsupn fn,

Nf(x) =def Of = Of ∪ Ωf.
(2.11)

Here we are taking the closure in X ×X and so we obtain closed relations.
The relation Nf , defined by Auslander et al [18], [19] and [20] (see also Ura
[64],[65]), is called the prolongation of f . Nf(x) is our next, broader, notion
of the “future” of x.
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To compare all these suppose that x, y ∈ X. Then y ∈ Of(x) when there
exists a positive integer n such that y = fn(x) while y ∈ ωf(x) if there is a
sequence of positive integers ni → ∞ such that fni(x) → y. On the other
hand, y ∈ Ωf(x) iff there are sequences xi → x and ni → ∞ such that
fni(xi) → y. Thus, y ∈ Rf(x) if for every ε > 0 we can run along the orbit
of x and at some positive time make a smaller than ε jump to y. Similarly,
y ∈ Nf(x) if for every ε > 0 we can make an initial ε small jump to a point
x1, run along the orbit of x1 and at some positive time make an ε small jump
to y. Thus,

Rf =
⋂
ε>0

Vε ◦ (Of) and Nf =
⋂
ε>0

Vε ◦ (Of) ◦ Vε. (2.12)

The relations Of and Rf are transitive but usually not closed. In general,
when we pass to the closure, obtaining Nf , we lose transitivity. When we
consider Lyapunov functions we will see why it is natural to want both of
these properties, closure and transitivity.

The intersection of any collection of closed, transitive relations is a closed,
transitive relation. Notice that X × X is such a relation. Thus, we obtain
Gf , the smallest closed, transitive relation which contains f by intersecting:

Gf =def

⋂
{Q ⊆ X ×X : Q = Q and f, Q ◦Q ⊆ Q}. (2.13)

There is an alternative procedure, due to Conley, see [29], which con-
structs a closed, transitive relation, generally larger than Gf , in a simple and
direct fashion.

A chain or 0-chain is a finite or infinite sequence {xn} such that xn+1 =
f(xn) along the way, i. e. a piece of the orbit sequence. Given ε ≥ 0 an
ε-chain is a finite or infinite sequence {xn} such that each xn+1 at most ε
distance away from the point f(xn), i. e. xn+1 ∈ V̄ε(f(xn)). If the chain has
at least two terms, but only finitely many, then the first and last terms are
called the beginning and the end of the chain. The number of terms minus
1 is then called the length of the chain. We say that x chains to y, written
y ∈ Cf(x) if for every ε > 0 there is an ε chain which begins at x and ends
at y. That is,

Cf =def

⋂
ε>0

O(V̄ε ◦ f). (2.14)

Compare this with (2.12). If y ∈ Rf(x) then we can get to y by moving
along the orbit of x and then taking an arbitrarily small jump at the end. If
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y ∈ Nf(x) then we are allowed a small jump at the beginning as well as the
end. Finally, if y ∈ Cf(x) then we are allowed a small jump at each iterative
step.

The chain relation is of great importance for applications. Suppose we
are computing the orbit of a point on a computer. At each step there is
usually some round-off error. Thus, what we take to be an orbit sequence
is in reality an ε chain for some positive ε. It follows that, in general, what
we can expect to compute directly about f is only that level of information
which is contained in Cf .

As the intersection of transitive relations, Cf is transitive. It is not hard
to show directly that the chain relation Cf is also closed. Since x1 = x, x2 =
f(x) is a 0-chain beginning at x and ending at f(x), we have f ⊆ Cf . It
follows that Gf ⊆ Cf .

This inclusion may be strict. The identity map f = 1X is already a closed
equivalence relation. Hence, G1X = 1X . On the other hand, for any ε > 0 the
relation OVε is an open equivalence relation, and so each equivalence class
is clopen (= closed and open). If X is connected then the entire space is a
single equivalence class. Since this is true for every positive ε we have

X connected =⇒ C1X = X ×X. (2.15)

Since Cf is transitive, the composites {(Cf)n} form a decreasing sequence
of closed transitive relations. We denote by ΩCf the intersection of this
sequence. That is,

ΩCf =def

∞⋂
n=0

(Cf)n. (2.16)

One can show that y ∈ ΩCf(x) if and only if for every ε > 0 and positive
integer N there is an ε chain of length greater than N which begins at x
and ends at y. In addition, the following identity holds (compare (2.10) and
(2.11)):

Cf = Of ∪ ΩCf. (2.17)

Thus, built upon f we have a tower of relations:

f ⊆ Of ⊆ Rf ⊆ Nf ⊆ Gf ⊆ Cf. (2.18)

These are the relations which capture the successively broader notions of the
“future” of an input x.
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A useful identity which holds for A = O,R,N, G and C is

Af = f ∪ (Af) ◦ f = f ∪ f ◦ (Af). (2.19)

These are easy to check directly for all but G. For that one, observe that
f ∪ (Gf) ◦ f and the other composite are closed and transitive and so each
contains Gf .

It is also easy to show that for A = O,N,G and C: A(f−1) = (Af)−1 and
so we can omit the parentheses in these cases. The analogue for R is usually
false and we define

αf =def ω(f−1). (2.20)

Thus, αf(x) is the set of limit points of the negative time orbit sequence
{x, f−1(x), f−2(x), ...} and it is usually not true that αf equals (ωf)−1.

For Θ = α, ω, Ω and ΩC it is true that

Θf = f ◦Θf = f−1 ◦Θf = Θf ◦ f = Θf ◦ f−1. (2.21)

Now we are ready to consider the variety of recurrence concepts. Recall
that a point x is recurrent - in some sense - if it lies in its own “future”.
Thus, for any relation F on X we define the cyclic set

|F | =def {x : (x, x) ∈ F} (2.22)

Clearly, if F is a closed relation then |F | is a closed subset of X.
A point x lies in |f | when x = f(x) and so |f | is the set of fixed points

for f , while x ∈ |Of | when x = fn(x) for some positive integer n and so
|Of | is the set of periodic points. It is easy to check that every periodic point
is contained in |ωf | and so |ωf | = |Rf |. These are called recurrent points
or sometimes the positive recurrent points to distinguish them from |αf |,
the set of negative recurrent points. Similarly, we have |Ωf | = |Nf |, called
the set of nonwandering points. The points of |Gf | are called generalized
nonwandering and those of |Cf | = |ΩCf | are called chain recurrent. The set
of periodic points and the sets of recurrent points need not be closed. The
rest, associated with closed relations, are closed subsets.

For an illustration of these ideas, observe that for x, y, z ∈ X

y, z ∈ ωf(x) =⇒ z ∈ Ωf(y). (2.23)
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Just hop from y to a nearby point on the orbit of x, moving arbitrarily far
along the orbit, you repeatedly arrive nearby z and then can hop to it. In
particular, with y = z we see that every point y of ωf(x) is non-wandering.
However, the points of ωf(x) need not be recurrent. That is, while y ∈ Ωf(y)
for all y ∈ ωf(x) it need not be true that y ∈ ωf(y). In particular, Rf(y)
can be a proper subset of Nf(y).

On the other hand, it is true that for most points x in X the orbit closure
Rf(x) is equal to the prolongation set Nf(x). Recall that a subset of a
complete metric space is called residual when it is the countable intersection
of dense, open subsets. By the Baire Category Theorem a residual subset is
dense.

Theorem 2.2 If f is a homeomorphism on X then
{x ∈ X : ωf(x) = Ωf(x)} = {x ∈ X : Rf(x) = Nf(x)}
is a residual subset of X.

In particular, if every point is nonwandering, i. e. x ∈ Ωf(x) for all
x, then the set of recurrent points is residual in X. However, if the set of
nonwandering points is a proper subset of X, it need not be true that most
of these points are recurrent. The closure of |ωf | can be a proper subset of
the closed set |Ωf |.

From recurrence we turn to the notion of invariance.
Let F be a relation on X and A be a closed subset of X. We call A

+ invariant for F if F (A) ⊆ A and invariant for F if F (A) = A. For
a homeomorphism f on X, the set A is invariant for f if and only if it
is + invariant for f and for f−1. For example, (2.19) implies that for A =
O,R,N,G and C each of the sets Af(x) is + invariant for f and (2.21) implies
that for Θ = α, ω, Ω and ΩC each of the sets Θf(x) is invariant for f . Finally,
for A = O,R,N,G and C each of the cyclic sets |Af | is invariant for f .

If A is a nonempty, closed invariant subset for a homeomorphism f then
the restriction f |A is a homeomorphism on A and we call this dynamical
system the subsystem determined by A. In general, if F is a relation on X
and A is any subset of X then we call the relation F ∩ (A × A) on A the
restriction of F to A.

For a homeomorphism f the families of + invariant subsets and of in-
variant subsets are each closed under the operations of closure and interior
and under arbitrary unions and intersections. If A is + invariant then the

16



sequence {fn(A)} is decreasing and the intersection is f invariant. Further-
more, this intersection contains every other f invariant subset of A and so is
the maximum invariant subset of A.

If A is + invariant for f then it is + invariant for Of . If, in addition, A is
closed then it is + invariant for Rf . However, + invariance with respect to
the later relations in the tower (2.18) are successively stronger conditions, and
the relations of (2.18) provide convenient tools for studying these conditions.

We call a closed + invariant subset A a stable subset, or a Lyapunov
stable subset, if it has a neighborhood basis of + invariant neighborhoods.
That is, if G is open and A ⊆ G then there exists a + invariant open set U
such that A ⊆ U ⊆ G.

Theorem 2.3 A closed subset A is + invariant for Nf if and only if it is a
stable + invariant set for f .

Proof: If G is an open set which contains A and Nf(A) ⊆ A then
U = {x : Nf(x) ⊆ G} is an open set which contains A and which is +
invariant by (2.19). The reverse implication is easy to check directly. QED

Invariance with respect to Gf is characterized by using Lyapunov func-
tions, which generalize the strict Lyapunov functions described Section 1.

For a closed relation F on X, a Lyapunov function L for F is a continuous,
real-valued function on X such that

(x, y) ∈ F =⇒ L(x) ≤ L(y), (2.24)

(some authors, e. g. Lyapunov, use the reverse inequality).
For any continuous, real-valued function L on X the set {(x, y) : L(x) ≤

L(y)} is a closed, transitive relation on X. To say that L is a Lyapunov
function for F is exactly to say that this relation contains F . It follows that
if L is a Lyapunov function for a homeomorphism f then it is automatically
a Lyapunov function for the closed, transitive relation Gf . That L be a
Lyapunov function for Cf is usually a stronger condition. For example, any
continuous, real-valued function is a Lyapunov function for 1X , but by (2.15)
if X is connected then constant functions are the only Lyapunov functions
for C1X .

The following result is a dynamic analogue of Urysohn’s Lemma in general
topology and it has a similar proof.
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Theorem 2.4 A closed subset A is + invariant for Gf if and only if there
exists a Lyapunov function L : X → [0, 1] for f such that A = L−1(1).

A Lyapunov function for a homeomorphism f is non-decreasing on each
orbit sequence x, f(x), f 2(x), ..... Suppose that x is a periodic point, i.e.
x ∈ |Of |. Then x = fn(x) for some positive integer n, and it follows that L
must be constant on the orbit of x.

Now suppose, more generally, that x is a generalized recurrent point, i.e.
x ∈ |Gf |. By (2.19) (f(x), x) ∈ Gf and so L(f(x)) = L(x) whenever L is
a Lyapunov function for f (and hence for Gf). Recall that the set |Gf | of
generalized recurrent points is f invariant. It follows that fn(x) ∈ |Gf | for
every integer n and so L(fn+1(x)) = L(fn(x)) for all n. Thus, a Lyapunov
function for a homeomorphism f is constant on the orbit of each generalized
recurrent point x.

Similarly, if x is a chain recurrent point, i.e. x ∈ |Cf |, then L(f(x)) =
L(x) whenever L is a Lyapunov function for Cf and so a Lyapunov function
for Cf is constant on the orbit of each chain recurrent point.

Of fundamental importance is the observation that one can construct
Lyapunov functions for f (and for Cf) which are increasing on all orbit
sequences which are not generalized recurrent (respectively, chain recurrent).

Theorem 2.5 For a homeomorphism f on a compact metric space X there
exist continuous functions L1, L2 : X → [0, 1] such that L1 is a Lyapunov
function for f , and hence for Gf , and L2 is a Lyapunov function for Cf and,
in addition,

x ∈ |Gf | ⇐⇒ L1(x) = L1(f(x)),

x ∈ |Cf | ⇐⇒ L2(x) = L2(f(x)).
(2.25)

Lyapunov functions which satisfy the conditions of (2.25) are called com-
plete Lyapunov functions for f and for Cf , respectively.

If L is a Lyapunov function for f then we define the set of critical points
for L

|L| =def {x ∈ X : L(x) = L(f(x))}. (2.26)

This language is a bit abusive because here criticality describes a relationship
between L and f . It does not depend only upon L. However, we adopt this
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language to compare the general situation with the simpler strict Lyapunov
function case in Section 1. Similarly, we call L(|L|) ⊆ R the set of critical
values for L. The complementary points of X and R respectively are called
regular points and regular values for L. Thus, the generalized recurrent
points are always critical points for a Lyapunov function L and for a complete
Lyapunov function these are the only critical points.

For invariance with respect to Cf we turn to the study of attractors.

3 Attractors and Chain Recurrence

For a homeomorphism f on X we say that a closed set U is inward if f(U)
is contained in U◦, the interior of U . By compactness this implies that
V̄ε ◦ f(U) ⊆ U for some ε > 0. That is, U is + invariant for the relation
V̄ε ◦ f . Hence, any ε chain for f which begins in U remains in U . It follows
that an inward set for f is Cf + invariant.

For example, assume that L is a Lyapunov function for f . Then for any
s ∈ R the closed set Us = {x : L(x) ≥ s} is + invariant for f . Suppose now
that s is a regular value for L. This means that for all x such that L(x) = s
we have L(f(x)) > L(x) = s. On the other hand, for the remaining points
x of Us we have L(f(x)) ≥ L(x) > s. Thus, f(Us) is contained in the open
set {x : L(x) > s} ⊆ Us and so Us is inward. It easily follows that L is a
Lyapunov function for Cf if the set of critical values is nowhere dense.

If U is inward for f then we define A =
⋂∞

n=0{fn(U)} to be the attractor
associated with U . Since an inward set U is + invariant for f , the sequence
{fn(U)} is decreasing. In fact, for U inward and n,m ∈ Z we have

n > m =⇒ fn(U) ⊆ fm(U)◦. (3.1)

The associated attractor is the maximum f invariant subset of U and {fn(U) :
n ∈ Z} is a sequence of inward neighborhoods of A, forming a neighborhood
basis for the set A. That is, if G is any open which contains A then by
Proposition 1.1a, fn(U) ⊆ G for sufficiently large n.

For example, the entire space X is an inward set and is its own associated
attractor. In general, a set A is inward and equal to its own attractor if and
only if A is a clopen, f invariant set.

The power of the attractor idea comes from the equivalence of a number
of descriptions of different apparent strength. We use the ”weak” ones to
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test for an attractor and then apply the ”strong” conditions. The following
collects these alternative descriptions.

Theorem 3.1 Let f be a homeomorphism on X and A be a closed f invari-
ant subset of X. The following conditions are equivalent.

(i) A is an attractor. That is, there exists an inward set U such that⋂∞
n=0 fn(U) = A.

(ii) There exists a neighborhood G of A such that
⋂∞

n=0 fn(G) ⊆ A.

(iii) A is Nf + invariant and the set {x : ωf(x) ⊆ A} is a neighborhood of
A.

(iv) The set {x : Ωf(x) ⊆ A} is a neighborhood of A.

(v) The set {x : ΩCf(x) ⊆ A} is a neighborhood of A.

(vi) A is Gf + invariant and the set A∩|Gf | is clopen in the relative topology
of the closed set |Gf |.

(vii) A is Cf + invariant and the set A∩|Cf | is clopen in the relative topology
of the closed set |Cf |.

Applying Theorem 2.3 to condition (iii) of Theorem 3.1 we see that if
A is a stable set for f and, in addition, the orbit of every point in some
neighborhood of x tends asymptotically toward A then A is an attractor.
The latter condition alone does not suffice, although the strengthening in
(iv) is sufficient. For example, the homeomorphism of [0, 1] defined by t 7→ t2

has {0} as an attractor. If we identify the two fixed points 0, 1 ∈ [0, 1] by
mapping t to z = e2πit then we obtain a homeomorphism f on the unit circle
X. For every z ∈ X, we have ωf(z) = {1}, the unique fixed point. However,
{1} is not an attractor for f . In fact, Ωf(1) = X.

The class of attractors is closed under finite union and finite intersection.
Using infinite intersections we can characterize Cf invariance.

Theorem 3.2 Let f be a homeomorphism on X and A be a closed f invari-
ant subset of X. The following conditions are equivalent. When they hold
we call A a quasi-attractor for f .
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(i) A is Cf + invariant.

(ii) A is the intersection of a (possibly infinite) set of attractors.

(iii) The set of inward neighborhoods of A form a basis for the neighborhood
system of A.

From Theorem 2.3 again it follows that a quasi-attractor is stable.
If A is a closed invariant set for a homeomorphism f then A is called an

isolated invariant set if it is the maximum invariant subset of some neigh-
borhood U of A. That is,

A =
+∞⋂

n=−∞
fn(U). (3.2)

In that case, U is called an isolating neighborhood for A. Notice that if U
is a closed isolating neighborhood for A and the positive orbit of x remains
in U , i. e. fn(x) ∈ U for n = 0, 1, ... then ωf(x) ⊆ A because ωf(x) is an
invariant subset of U .

Since an attractor is the maximum invariant subset of some inward set, it
follows that an attractor is isolated. Conversely, by condition (iii) of Theorem
3.1 an invariant set is an attractor precisely when it is isolated and stable.
In particular, a quasi-attractor is an attractor exactly when it is an isolated
invariant set.

An attractor for f−1 is called a repellor for f . If U is an inward set for f
then X \ U = X \ (U◦) is an inward set for f−1 and B =

⋂∞
n=0 f−n(X \ U)

is the associated repellor for f . We call B the repellor dual to the attractor
A =

⋂∞
n=0 fn(U). Recall that an f invariant set is f−1 invariant. In par-

ticular, attractors and repellors are both f and f−1 invariant. The open set⋃∞
n=0 f−n(U) = X \ B is called the domain of attraction for A. The name

comes from the implication:

x ∈ X \B =⇒ ω(x) ⊆ ΩCf(x) ⊆ A,

x ∈ X \ A =⇒ α(x) ⊆ ΩCf−1(x) ⊆ B.
(3.3)

For example, the entire space X is both an attractor and a repellor with
dual ∅.
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If A is an attractor then we call the set of chain recurrent points in A,
i. e. A ∩ |Cf |, the trace of the attractor A. An attractor is determined by
its trace via the equation

Cf(A ∩ |Cf |) = A. (3.4)

The trace of an attractor is a clopen subset of |Cf | by part (vii) of Theorem
3.1. Conversely, suppose A0 is a subset of |Cf | which is + invariant for the
restriction of Cf to |Cf |. That is, x ∈ A0 and y ∈ Cf(x) ∩ |Cf | implies
y ∈ A0. If A0 is clopen in |Cf |, then Cf(A0) is the attractor with trace A0

and Cf−1(|Cf | \ A0) is the dual repellor. By Theorem 3.2, if A0 is merely
closed then Cf(A0) is a quasi-attractor.

With the relative topology the set |Cf | = |Cf−1| of chain recurrent points
is a compact metric space and so has only countably many clopen subsets
(Every clopen subset is a finite union of members of a countable basis for the
topology). It follows that, while there are often uncountably many inward
sets, there are only countably many attractors.

When restricted to |Cf | = |Cf−1| the closed relation Cf∩Cf−1 is reflexive
as well as symmetric and transitive. The individual equivalence classes are
closed f invariant subsets of X called the chain components of f , or the basic
sets of f . These chain components are the analogues of the individual critical
points in gradient case described in Section 1.

Any two points of a chain component are related by Cf . This is a type
of transitivity condition. As with recurrence, there are several -increasingly
broad- notions of dynamic transitivity and these can be associated with the
relations of (2.18). First, we consider when the entire system f on X is
transitive in the some way. Then we say that a closed f invariant subset A
is a transitive subset in this way, when the subsystem f |A on A is transitive
in the appropriate way.

A group action on a set is called transitive when one can move from any
element of the set to any other by some element of the group. That is, the
entire set is a single orbit of the group action. Notice that this use of the
word is unrelated to transitivity of a relation. Recall that a relation F on a
set X is transitive when F ◦F ⊆ F . We are now considering when it happens
that any two points of X are related by F . This just says that F = X ×X
which we will call the total relation on X.

First, what does it mean to say that Of is total, that is to say all of X
lies in a single orbit of f? First, compactness implies that X is then finite
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and so the homeomorphism f is a permutation of the finite set X. Such
permutation is a product of disjoint cycles and Of = X × X exactly when
all of X consists of a single cycle. The associated invariant subsets are the
periodic orbits of f , including the fixed points.

Next, we consider when the orbit closure relation Rf is total, that is,
when every point is in the orbit closure of every other.

Theorem 3.3 Let f be a homeomorphism on X. The following conditions
are equivalent and when they hold we call f minimal.

(i) For all x ∈ X, Of(x) is dense in X.

(ii) For all x ∈ X, Rf(x) = X, i. e. Rf = X ×X.

(iii) For all x ∈ X, ωf(x) = X, i. e. ωf = X ×X.

(iv) X is the only nonempty, closed f + invariant subset of X.

(v) X is the only nonempty, closed f invariant subset of X.

Recall our convention that the state space of a dynamical system is
nonempty, although we do allow the empty set as an invariant subset. For ex-
ample, the empty set is the repellor/attractor dual to the attractor/repellor
which is the entire space.

Thus, a closed f invariant subset A of X is minimal when it is nonempty
but contains no nonempty, proper f invariant subset. From compactness it
follows via the usual Zorn’s Lemma argument that every nonempty, closed
f + invariant subset of X contains a minimal, nonempty, closed f invariant
subset.

Theorem 3.4 Let f be a homeomorphism on X. The following conditions
are equivalent and when they hold we call f topologically transitive.

(i) For some x ∈ X, Of(x) is dense in X, i. e. Rf(x) = X.

(ii) For all x ∈ X, Nf(x) = X, i. e. Nf = X ×X.

(iii) For all x ∈ X, Ωf(x) = X, i. e. Ωf = X ×X.

(iv) X is the only closed f + invariant subset with a nonempty interior.
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If f is topologically transitive then the set {x : ωf(x) = X} is residual,
i. e. it is the countable intersection of dense, open subsets of X.

Every point in a minimal system has a dense orbit. If f is topologically
transitive then the set of transitive points for f ,

Transf =def {x : ωf(x) = X} = {x : Rf(x) = X}, (3.5)

is residual and so is dense by the Baire Category Theorem. However, its
complement is either empty, which is the minimal case, or else is dense as
well. Also, there is a usually rich variety of invariant subsets. It may happen,
for instance, that the set of periodic points is dense. Most well-studied exam-
ples of chaotic dynamical systems are non-minimal, topologically transitive
systems. In fact, Devaney used the conjunction of topological transitivity
and density of periodic points in an infinite system as a definition of chaos.

The broadest notion of transitivity is associated with the chain relation
Cf .

Theorem 3.5 Let f be a homeomorphism on X. The following conditions
are equivalent and when they hold we call f chain transitive.

(i) For all x ∈ X, Cf(x) = X, i. e. Cf = X ×X.

(ii) For all x ∈ X, ΩCf(x) = X, i. e. ΩCf = X ×X.

(iii) X is the only nonempty inward set.

(iv) X is the only nonempty attractor.

Before proceeding further, we pause to observe that each of these three
concepts is the same for f and for its inverse. Because the f invariant subsets
are the same as the f−1 invariant subsets, we see that f−1 is minimal when f
is. Since N(f−1) = (Nf)−1 and C(f−1) = (Cf)−1, it follows as well that f−1 is
topologically transitive or chain transitive when f satisfies the corresponding
property.

There are many naturally occurring chain transitive subsets. For every
x ∈ X the limit sets αf(x) and ωf(x) are chain transitive subsets as are each
of the chain components. Notice that if x and y are points of some chain
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component B then by definition of the equivalence relation Cf ∩Cf−1, x and
y can be connected by ε chains in X for any positive ε. To say that B is a
chain transitive subset is to make the stronger statement that they can be
connected via ε chains which remain in B.

Contrast this positive result with the trap set by implication (2.23) which
suggests that B = ωf(x) is a topologically transitive subset. However, (2.23),
which says B ×B ⊆ Nf , does not imply that the restriction f |B is topolog-
ically transitive, i.e. B × B = N(f |B). It may not be possible to get from
near y to near z without a hop which takes you outside B.

In fact, if f is any chain transitive homeomorphism on a space X then
it is possible to embed X as a closed subset of a space Y and extend f to a
homeomorphism g on Y in such a way that X = ωg(y) for some point y ∈ Y .

Any chain transitive subset for f is contained in a unique chain compo-
nent of |Cf |. In fact the chain components are precisely the maximal chain
transitive subsets.

In particular, each subset αf(x) and ωf(x) is contained in some chain
component of f .

By using (2.15) one can show that each connected component of the closed
subset |Cf | is contained in some chain component as well. It follows that the
space of chain components, that is, the space of Cf∩Cf−1 equivalence classes
with the quotient topology from |Cf |, is zero-dimensional. So this space is
either countable or is the union of a Cantor set with a countable set.

An individual chain component B is called isolated when it is a clopen
subset of the chain recurrent set |Cf | or, equivalently, if it is an isolated
point in the space of chain components. Thus, B is isolated when it has a
neighborhood U in X such that U ∩ |Cf | = B. It can be proved that B is
an isolated chain component precisely when it is an isolated invariant set, i.
e. it admits a neighborhood U satisfying (3.2).

The individual chain components generalize the role played by the critical
points in the gradient case. They are the blobs we described at the end of
Section 1. We complete the analogy by identifying which chain components
are like the relative maxima and minima among the critical points.

Theorem 3.6 Let B be a nonempty, closed, f invariant set for a homeo-
morphism f on X. The following conditions are equivalent and when they
hold we call B a terminal chain component.

(i) B is a chain transitive quasi-attractor.
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(ii) B is a Cf + invariant, chain transitive subset of X.

(iii) B is a Cf + invariant chain component.

(iv) In the set of nonempty, closed Cf + invariant subsets of X B is an
element which is minimal with respect to inclusion.

In particular, B is a chain transitive attractor if and only if it is an isolated,
terminal chain component.

From condition (iv) and Zorn’s Lemma it follows that every nonempty,
closed Cf + invariant subset of X contains a terminal chain component. In
particular, ΩCf(x) contains a terminal chain component for every x ∈ X.

Clearly, if there are only finitely many chain components then each ter-
minal chain component is isolated and so is an attractor.

Corollary 3.7 Let f be a homeomorphism on X and let B be a nonempty,
closed, Cf + invariant subset of X. If for some x ∈ X, B ⊆ ωf(x) then B
is a terminal chain component and B = ωf(x).

Proof: B contains some terminal chain component B1 and ωf(x) is
contained in some chain component B2. Thus, B1 ⊆ B ⊆ ωf(x) ⊆ B2. Since
distinct chain components are disjoint, B1 = B2.

2

Because C(f−1) = (Cf)−1, the chain components for f and f−1 are the
same. A chain component is called an initial chain component for f when it
is a terminal chain component for f−1.

Let L be a Lyapunov function for Cf . L is constant on each chain compo-
nent and Theorem 2.5 says that L can be constructed to be strictly increasing
on the orbit of every point of X \ |Cf |. That is, for such a complete Lya-
punov function the set |L| of critical points equals |Cf |. In that case, the
local maxima occur at terminal chain components and, as a partial converse,
an isolated terminal chain component is a local maximum for any complete
Cf Lyapunov function.

Theorem 3.8 For a homeomorphism f on X let L be a Cf Lyapunov func-
tion and let B be a chain component with r the constant value of L on B.
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(a) If there exists a neighborhood U of B such that L(x) < r for all x ∈
U \B, then B is a terminal chain component.

(b) Assume L is a complete Lyapunov function. If B is an attractor then
it is a terminal chain component and the domain of attraction U is an
open set containing B such that L(x) < r for all x ∈ U \B.

In particular, if there are only finitely many chain components for f
then by using L, a complete Cf Lyapunov function which distinguishes the
chain components, we obtain the picture promised at the end of Section 1.
The local maxima of L occur at the terminal chain components which are
attractors. The local minima are at the initial chain components which are
repellors. The remaining chain components play the role of saddles. As in
the gradient case, it can happen that there is an open set of points x such
that ωf(x) is contained in one of these saddle chain components. There is a
natural topological condition which, when it holds, excludes this pathology.

Theorem 3.9 For a homeomorphism f on X, assume that Nf = Cf or,
equivalently, that Ωf = ΩCf .

If A is a stable closed f invariant subset of X then A is a quasi-attractor.
For a residual set of points x in X, ωf(x) is a terminal chain component

and αf(x) is an initial chain component.

Proof: The result for a stable set A follows from the characterizations
in Theorems 2.3 and 3.2.

By Theorem 2.2, the set of x such that ωf(x) = Ωf(x) is always resid-
ual. By assumption this agrees with the set of x such that ωf(x) = ΩCf(x).
Corollary 3.7 implies that for such x the set ωf(x) is a terminal chain com-
ponent. For αf(x) apply this result to f−1. QED

If X is a compact manifold of dimension at least two, then the condition
Nf = Cf holds for a residual set in the Polish group of homeomorphisms on
X with the uniform topology. If, in addition, f has only finitely many chain
components (and this is not a residual condition on f) then it follows that
the points which are in the domain of attraction of some terminal set and in
the domain of repulsion of some initial set form a dense, open subset of X.
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4 Chaos and Equicontinuity

Any chain transitive system can occur as a chain component, but in the most
interesting cases the chain components are topologically transitive subsets.
In this section we consider the antithetical phenomena of equicontinuity and
chaos in topologically transitive systems.

If f is a homeomorphism on X and x ∈ X then x is called a transitive
point when its orbit Of(x) is dense in X. As in (3.4) we denote by Transf

the set of transitive points for f . The system is minimal exactly when every
point is transitive, i. e. when Transf = X.

To study equicontinuity we introduce a new metric df defined using the
original metric d on X.

df (x, y) =def sup {d(fn(x), fn(y)) : n = 0, 1, 2, ...}. (4.1)

It is easy to check that df is a metric, i. e. it satisfies the conditions of
positivity and symmetry as well as the triangle inequality. However, it is
usually not topologically equivalent to the original metric d, generating a
topology which is usually strictly finer ( = more open sets). We call a point
x ∈ X an equicontinuity point for f when for every ε > 0 there exists a δ > 0
so that for all y ∈ X

d(x, y) < δ =⇒ df (x, y) ≤ ε, (4.2)

or, equivalently, if for every ε > 0 there exists a neighborhood U of x with df

diameter at most ε (the terms “neighborhood”, “open set”, etc. will always
refer to the original topology given by d unless otherwise specified). Here the
df diameter of a subset A ⊆ X is

diamf (A) =def sup {df (x, y) : x, y ∈ A}. (4.3)

We denote the, possibly empty, set of equicontinuity points for f by Eqf .
When every point is an equicontinuity point, the system associated with

f is called equicontinuous, or we just say that f is equicontinuous. This co-
incides with the concept of equicontinuity of the set of functions {fn : n =
1, 2, ...}. Recall that any finite set of continuous functions is equicontinu-
ous, but equicontinuity for an infinite set is often, as in this case, a strong
condition. Equicontinuity of f says exactly that the metrics d and df are
topologically equivalent. For compact spaces topologically equivalent metrics
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are uniformly equivalent. Hence, if f is equicontinuous, then for every ε > 0
there exists a δ > 0 such that for all x, y ∈ X implication (4.2) holds.

When f is equicontinuous then we can replace d by df since in the equicon-
tinuous case the latter is a metric giving the correct topology. The homeo-
morphism f is then an isometry of the metric, i. e. df (x, y) = df (f(x), f(y))
for all x, y ∈ X. This equality uses a famous little problem which keeps
being rediscovered: If f is a surjective map on a compact metric space X
with metric d such that d(f(x), f(y)) ≤ d(x, y) for every x, y ∈ X then f is
an isometry on X, see e. g. Alexopoulos [9] or Akin [3] Proposition 2.4(c).

Conversely, if f is an isometry of a metric d on X (with the correct
topology) then f is clearly equicontinuous.

When X has a dense set of equicontinuity points we call the system almost
equicontinuous. If f is almost equicontinuous but not equicontinuous then
the δ in (4.2) will depend upon x ∈ Eqf as well as upon ε.

On the other hand, we say that the system has sensitive dependence upon
initial conditions, or simply that f is sensitive when there exists ε > 0 such
that diamf (U) > ε for every nonempty open subset U of X, or, equivalently,
if there exists ε > 0 such that for any x ∈ X and δ > 0, there exists y ∈ X
such that d(x, y) < δ but for some n > 0 d(fn(x), fn(y)) > ε. Here the
important issue is that ε is independent of the choice of x and δ.

Sensitivity is a popular candidate for a definition of chaos in the topologi-
cal context. Suppose for a sensitive homeomorphism f you are attempting to
estimate analyze the orbit of x, but may make an -arbitrarily small- positive
error for initial point input. Even if you are able to compute the iterates
exactly, then you cannot be certain that you always remain ε close to the
orbit you want. If you have chosen a bad point y as input then at some time
n you will be at fn(y) more than distance ε away from the point fn(x) that
you want.

For transitive systems, the Auslander-Yorke Dichotomy Theorem holds
(see [21]):

Theorem 4.1 Let f be a topologically transitive homeomorphism on a com-
pact metric space X. Exactly one of the following alternatives is true.

• (Sensitivity) The homeomorphism f is sensitive and there are no equicon-
tinuity points, i. e. Eqf = ∅.

• (Almost Equicontinuity) The set of equicontinuity points coincides with
the set of transitive points, i. e. Eqf = Transf , and so the set of
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equicontinuity points is residual in X.

Proof: For ε > 0 let Eqf,ε be the union of all open sets with df diameter
at most ε. So x ∈ Eqf,ε if and only if it has a neighborhood with df diameter
at most ε. It is then easy to check that x ∈ Eqf,ε if and only if f(x) ∈ Eqf,ε.
Thus, Eqf,ε is an f invariant open set. If Eqf,ε is nonempty and x is a
transitive point then the orbit eventually enters Eqf,ε. Since fn(x) ∈ Eqf,ε

for some positive n, it follows that x ∈ Eqf,ε because the set is invariant.
This shows that

Eqf,ε 6= ∅ =⇒ Transf ⊆ Eqf,ε. (4.4)

If for every ε > 0 we have Eqf,ε 6= ∅ then Transf ⊆ ⋂
ε>0 Eqf,ε = Eqf .

We omit the proof that only the transitive points can be equicontinuous in
a topologically transitive system.

If, instead, for some ε > 0 the set Eqf,ε is empty then by definition f is
sensitive. QED

The system is minimal if and only if Transf = X and so a topologically
transitive system is equicontinuous if and only if it is both almost equicon-
tinuous and minimal. In particular, we have:

Corollary 4.2 Let f be a minimal homeomorphism on X. Either f is sen-
sitive or f is equicontinuous.

Banks et al [22] showed that a topologically transitive homeomorphism
on an infinite space with dense periodic points is always sensitive. On the
other hand, there do exist topologically transitive homeomorphisms which
are almost equicontinuous but not minimal and hence not equicontinuous.
If f is an almost equicontinuous, topologically transitive homeomorphism
then there is a sequence of positive integers nk →∞ such that the sequence
{fnk} converges uniformly to the identity 1X , see Glasner and Weiss [37] and
Akin, Auslander and Berg [6]. In general, when such a convergent sequence
of iterates exists the homeomorphism f is called uniformly rigid.

Other notions of chaos are defined using ideas related to proximality. A
pair (x, y) ∈ X ×X is called proximal for f if

lim infn→∞ d(fn(x), fn(y)) = 0, (4.5)
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or, equivalently, if 1X∩ω(f×f)(x, y) 6= ∅ where f×f is the homeomorphism
on X ×X defined by (f × f)(x, y) = (f(x), f(y)). If a pair is not proximal
then it is called distal. The pair is called asymptotic if

limn→∞ d(fn(x), fn(y)) = 0. (4.6)

We will call (x, y) a Li-Yorke pair if it is proximal but not asymptotic. That
is, (4.5) holds but

lim supn→∞ d(fn(x), fn(y)) > 0. (4.7)

Li and Yorke [48] called a subset A of X a scrambled set if every non-diagonal
pair in A×A is a Li-Yorke pair. Following their definition f is called Li-Yorke
chaotic when there is an uncountable scrambled subset.

The homeomorphism f is called distal when every nondiagonal pair in
X×X is a distal pair. If f is an isometry then clearly f is distal and so every
equicontinuous homeomorphism is distal. There exist homeomorphisms f
which are minimal and distal but not equicontinuous, as described in e. g.
Auslander [17]. Since such an f is minimal but not equicontinuous, it is
sensitive. On the other hand, a distal homeomorphism has no proximal pairs
and so is certainly not Li-Yorke chaotic.

There exists an almost equicontinuous, topologically transitive, non-minimal
homeomorphism f such that a fixed point e ∈ X is the unique minimal subset
of X and so the pair (e, e) is the unique subset in X×X which is minimal for
f×f . It follows that (e, e) ∈ ω(f×f)(x, y) for every pair (x, y) ∈ X×X and
so every pair is proximal. On the other hand, because f is uniformly rigid,
every pair (x, y) is recurrent for f × f and it follows that no non-diagonal
pair is asymptotic. Thus, the entire space X is scrambled and f is Li-Yorke
chaotic but not sensitive.

There is a sharpening of topological transitivity which always implies
sensitivity as well as most other topological conditions associated with chaos.
A homeomorphism f on X is called weak mixing if the homeomorphism f×f
on X ×X is topologically transitive. If (x, y) is a transitive point for f × f
then since ω(f × f)(x, y) = X × X it follows that df (x, y) = M , where M
is the diameter of the entire space X. Suppose f is weak mixing and U is
any nonempty open subset of X. Since Transf×f is dense in X ×X, there
is a transitive pair (x, y) in U ×U . Hence, diamf (U) = M . When f is weak
mixing, there exists an uncountable A ⊆ X such that every nondiagonal pair
in A×A is a transitive point for f × f , Iwanik [44] and Huang and Ye [42],
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see also Akin [5]. Since such a set A is clearly scrambled, it follows that f is
Li-Yorke chaotic.

For any two subsets U, V ⊆ X we define the hitting time set to be the set
integers given by:

N(U, V ) =def {n ≥ 0 : fn(U) ∩ V 6= ∅} (4.8)

The topological transitivity condition Ωf = X × X says that whenever U
and V are nonempty open subsets the hitting time set N(U, V ) is infinite.
We call f mixing if for every pair of nonempty open subsets U, V there exists
k such that n ∈ N(U, V ) for all n ≥ k. As the names suggest, mixing implies
weak mixing.

Example The most important example of a chaotic homeomorphism
is the ubiquitous shift homeomorphism. We think a of fixed finite set A as
an alphabet and for any positive integer k the sequences in A of length k,
i. e. the elements of Ak, are called words of length k. When A is equipped
with the discrete topology it is compact and so by the Tychonoff Product
Theorem any product of infinitely many copies of A is compact when given
the product topology. Using the group of integers as our index set, we let
X = AZ. There is a metric compatible with this topology. For x, y ∈ X let

d(x, y) =def infimum {2−n : xi = yi for all i with |i| < n}. (4.9)

The metric d is an ultrametric. That is, it satisfies a strengthening of the
triangle inequality. For all x, y, z ∈ X:

d(x, z) ≤ max(d(x, y), d(y, z)). (4.10)

The ultrametric inequality is equivalent to the condition that for every pos-
itive ε the open relation Vε is an equivalence relation.

For any word a ∈ Ak and any integer j, the set {x ∈ X : xi+j = ai : i =
1, ..., k} is a clopen subset of X called a cylinder set, which we will denote
Ua,j. For example, with k = 2n−1 and j = −n the cylinder sets are precisely
the open balls of radius ε when 2−n < ε ≤ 2−n+1. From this we see that X
is a Cantor set with cylinder sets as a countable basis of clopen sets.

On X the shift homeomorphism s is defined by the equation

s(x)i = xi+1 for all i ∈ Z. (4.11)
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The fixed points |s| are exactly the constant sequences in X and the
periodic points |Os| are the periodic sequences in X. That is, st(x) = x for
some positive integer t exactly when xi+t = xi for all i ∈ Z.

It is easy to see that s is mixing. For example, if a, b ∈ A2n−1 and
j = −n, then the hitting time set N(Ua,j, Ub,j) contains every integer t larger
than 2n. For if xi−n = ai and xi−n+t = bi for i = 1, ..., 2n − 1 then x ∈ Ua,j

and st(x) ∈ Ub,j.
This illustrates why s is chaotic in the sense of unpredictable. Given

x ∈ X, if y ∈ X satisfies d(x, y) = 2−n, then moving right from position 0
the first n entries of y are known exactly. They agree with the entries of
x. But after position n, x provides no information about y. The remaining
entries on the right can be chosen arbitrarily.

Since s is mixing it is certainly topologically transitive, but it is useful
to characterize the transitive points of s. For any point x ∈ X and positive
integer n we can scan from the central position x0, left and right n− 1 steps
and observe a word of length 2n − 1. As we apply s the central position
shifts right. When we have applied st it has shifted t steps. Scanning left
and right we observe a new word. A point is a transitive point when for every
n we can observe every word in A2n−1 in this way by varying t. To construct
a transitive point x we need only list the -countably many- finite words of
every length and lay them out end to end to get the right side of x. The left
side of x can be arbitrary.

The shift homeomorphism is also expansive. In general, a homeomor-
phism f on a compact metric space X is called expansive when the diagonal
1X is an isolated invariant set for the homeomorphism f × f on X ×X and
so there exists ε > 0 such that V̄ε is an isolating neighborhood in the sense of
(3.2). That is, if x, y ∈ X and d(fn(x), fn(y)) ≤ ε for all n ∈ Z then x = y.
Such a number ε > 0 is called an expansivity constant. With respect to the
metric given by (4.9) it is easy to check that 1

2
is an expansivity constant for

the shift homeomorphism s.
The shift is interesting in its own right. In addition, the chaotic behav-

ior of other important examples, especially expansive homeomorphisms, are
studied by comparing them with the shift.

For a compact metric space X let H(X) denote the automorphism group
of X, i. e. the group of homeomorphisms on X, with the topology of uniform
convergence. The metric on H(X) is defined by the equation, for f, g ∈
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H(X) :
d(f, g) =def supremum{d(f(x), g(x)) : x ∈ X}. (4.12)

We obtain a topologically equivalent, but complete, metric by using
max(d(f, g), d(f−1.g−1)). The automorphism group is a Polish (= admits a
complete, separable metric) topological group. For f ∈ H(X) we define the
translation homeomorphisms `f and rf on H(X) by

`f (g) =def f ◦ g and rf (g) =def g ◦ f. (4.13)

For any x ∈ X, the evaluation map evx : H(X) → X is the continuous
map defined by evx(f) = f(x).

For any f ∈ H(X) let Gf denote the closure in H(X) of the cyclic
subgroup generated by f . That is,

Gf = {fn : n ∈ Z} ⊆ H(X). (4.14)

Thus, Gf is a closed, abelian subgroup of H(X).
Let Iso(X) denote the closed subgroup of isometries in H(X) (In contrast

with H(X) this varies with the choice of metric). It follows from the Arzela-
Ascoli Theorem that Iso(X) is compact in H(X). If f is an isometry on
X then Gf is a compact, abelian subgroup of Iso(X). Furthermore,the
translation homeomorphisms `f and rf restrict to isometries on the compact
space Iso(X) and Gf is a closed invariant subset. In fact, under either `f or
rf , Gf is just the orbit closure of f regarded as a point of Iso(X).

Recall that if f is an equicontinuous homeomorphism, then we can replace
the original metric by a topologically equivalent one, e. g. replace d by df ,
to get one for which f is an isometry.

If f is a homeomorphism on X and g is a homeomorphism on Y then
we say that a continuous function π : Y → X maps g to f when π ◦ g =
f ◦ π : Y → X. If, in addition, π is a homeomorphism then we call π an
isomorphism from g to f .

Theorem 4.3 Let f be a homeomorphism on X. Fix x ∈ X. The evaluation
map evx : H(X) → X maps `f on H(X) to f on X.

If f is an almost equicontinuous, topologically transitive homeomorphism
then evx restricts to a homeomorphism from the closed subgroup Gf of H(X)
onto Transf the residual subset of X consisting of the transitive points for
f .
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If f is a minimal isometry then evx restricts to a homeomorphism from
the compact subgroup Gf of H(X) onto X and so is an isomorphism from
`f on Gf to f on X.

The isometry result is classical, see e. g. Gottschalk and Hedlund [38]. It
shows that minimal, equicontinuous homeomorphisms are just translations
on compact, monothetic groups, where a topological group is monothetic
when it has a dense cyclic subgroup. Similarly a topologically transitive,
almost equicontinuous homeomorphism which is not minimal is obtained by
”compactifying” a translation on a noncompact monothetic group, see Akin
and Glasner [7]. In fact, the group cannot even be locally compact and
so, for example, is not the discrete group of integers. While examples of
such topologically transitive, almost equicontinuous but not equicontinuous
systems are known, it is not known whether there are any finite dimensional
examples. And it is known that they cannot occur on a zero-dimensional
space, i. e. the Cantor set. If finite dimensional examples do not exist
then every topologically transitive homeomorphism on a compact manifold
is sensitive except for the equicontinuous ones which we now describe.

Examples We can identify the circle S with the quotient topological
group R/Z. For a ∈ R the translation La = Ra on R induces the rotation τa

on the circle R/Z. If a ∈ Z then this is the identity map. If a is rational then
τa is periodic. But if a is irrational then τa is a minimal isometry on S. More
generally, if {1, a1, .., an} is linearly independent over the field of rationals Q
then on the torus X = Sn the product homeomorphism τa1 × ... × τan is a
minimal isometry. Such systems are sometimes called quasi-periodic.

Of course, the translation by 1 on the finite cyclic group Z/kZ of integers
modulo k is just a version of a single periodic orbit, the unique minimal map
on a finite space of cardinality k.

Recall that if {X1, X2, ...} is a sequence of topological spaces and {pn :
Xn+1 → Xn} is a sequence of continuous maps, then the inverse limit is the
closed subset of the product space Π∞

n=1 Xn:

LIM {Xn, pn} =def {x : pn(xn+1) = xn for n = 1, 2, ...}. (4.15)

If the spaces are compact and the maps are surjective then the nth coordinate
projection πn maps the compact space LIM onto Xn for every n (Hint: use
Proposition 2.1). Also, if the spaces are topological groups and the maps are
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homomorphisms, then LIM is a closed subgroup of the product topological
group. Finally, if {fn : Xn → Xn} is a sequence of homeomorphisms such
that pn maps fn+1 to fn for every n then the product homeomorphism Π∞

n=1 fn

restricts to a homeomorphism f on LIM and πn maps f to fn for every n.
Now let {kn} be an increasing sequence of positive integers such that

kn divides kn+1 for every n. Let Xn denote the finite cyclic group Z/knZ
and let pn : Xn+1 → Xn be the quotient homomorphism induced by the
inclusion map kn+1Z → knZ. Let fn denote the translation by 1 on Xn.
Define X to be the inverse limit of this system with f the restriction to X
of the product homeomorphism. X is a topological group whose underlying
space is zero-dimensional and perfect, i. e. the Cantor set. The product
homeomorphism is an isometry when we use the metric analogous to the
one defined by (4.9). Furthermore, the restriction f to X is a minimal
isometry. These systems are usually called adding machines or odometers.
It can be proved that every equicontinuous minimal homeomorphism on a
Cantor space is isomorphic to one of these. In general, every equicontinuous
minimal homeomorphism is isomorphic to (1) a periodic orbit, (2) an adding
machine, (3) a quasi-periodic motion on a torus, or (4) a product with each
factor either an irrational rotation on a circle, an adding machine or a periodic
orbit. The informal expression strange attractor is perhaps best defined as a
topologically transitive attractor which is not equicontinuous, i. e. which is
not one of these.

The word “chaos” suggests instability and unpredictability. However, for
many examples what is most apparent is stability. For the Henon attractor or
the Lorenz attractor the word “the” is used because in simulations one begins
with virtually any initial point, performs the iterations and, after discarding
an initial segment, one observes a particular, repeatable picture. The set as
a whole is a predictable feature, stable under perturbation of initial point,
an varying continuously with the defining parameters.

However, once the orbit is close enough to the attractor, essentially mov-
ing within the attractor itself, the motion is unpredictable, sensitive to ar-
bitrarily small perturbations. What remains is statistical prediction. We
cannot exactly predict when the orbit will enter some small subset of the
attractor, but we can describe approximately the amount of time it spends
in the subset. Such analysis requires an invariant measure and this takes us
to the boundary between topological and measurable dynamics.

By a measure µ on a compact metric space X we will mean a Borel
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probability measure on the space. Such a measure acts, via integration, on
the Banach algebra C(X) of continuous real-valued functions on X. The
set P(X) of such measures can thus be regarded as a convex subset of the
dual space of C(X). Inheriting the weak∗ topology on the dual space, P(X)
becomes a compact, metrizable space. There is a natural inclusion map
δ : X → P(X) which associates to x ∈ X the point mass at x, denoted δx.

The support of a measure µ on X is the smallest closed set with measure
1. Denoted |µ| its complement can be obtained by taking the union out of
a countable base for the topology of those members with measure 0. The
measure has full support (or simply µ is full) when |µ| = X. A measure is
full when every nonempty open set has positive measure.

A continuous map h : X → Y induces a map h∗ : P(X) → P(Y ) which
associates to µ the measure h∗µ defined by h∗µ(A) = µ(h−1(A)) for every
Borel subset A of Y . The continuous linear operator h∗ is the dual of h∗ :
C(Y ) → C(X) given by u 7→ u ◦ h. Furthermore, h∗ is an extension of h.
That is, h∗(δx) = δh(x). The supports are related by

h(|µ|) = |h∗µ|. (4.16)

To prove this, observe that for an open set U ⊂ Y

U ∩ h(|µ|) = ∅ ⇐⇒ µ(h−1(U)) = 0 ⇐⇒ h∗µ(U) = 0.
(4.17)

In particular, if f is a homeomorphism on X then f∗ is a linear homeo-
morphism on P(X). extending f on X. A measure µ is called an invariant
measure for f . Thus, |f∗| the set of fixed points for f∗ is the set of invariant
measures for f . Clearly, |f∗| is compact, convex subset of P(X). The classical
theorem of Krylov and Bogolubov says that this set is nonempty. To prove
it, one begins with an arbitrary point x ∈ X and considers the sequence of
Cesaro averages

σn(f, x) =def
1

n + 1
Σn

i=0 δfn(x). (4.18)

It can be shown that every measure in the nonempty set of limit points of
this sequence lies in |f∗|. If the set of limit points consists of a single measure
µ, i. e. the sequence converges to µ, then x is called a convergence point
for the invariant measure µ. For µ ∈ |f∗| we denote by Con(µ) the -possibly
empty- set of convergence points for µ.
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The extreme points of the compact convex set |f∗| are called the ergodic
measures for f . That is, µ is ergodic if it is not in the interior of some line
segment connecting a pair of distinct invariant measures. Equivalently, µ is
ergodic if a Borel subset A of X is invariant, i. e. f−1(A) = A, only when
the measure µ(A) is either 0 or 1. It follows that if u : X → R is a Borel
measurable, invariant function, then for any ergodic measure µ there is a set
of measure 1 on which u is constant. Or more simply, u ◦ f = u implies u is
constant almost everywhere with respect to µ.

The central result in measurable dynamics is the Birkhoff Pointwise Er-
godic Theorem which says, in this context:

Theorem 4.4 Given a homeomorphism f on a compact metric space X, let
u : X → R be a bounded, Borel measurable function. There exists a bounded,
invariant, Borel measurable function. û : X → R such that for every f
invariant measure µ
∫

u dµ =

∫
û dµ and limn→∞

1

n + 1
Σn

i=0 u(fn(x)) = û(x)

(4.19)
almost everywhere with respect to µ.

In particular, if µ is ergodic then

û(x) =

∫
u dµ (4.20)

almost everywhere with respect to µ.

It is a consequence of the ergodic theorem that

µ ergodic =⇒ µ(Con(µ)) = 1. (4.21)

Thus, with respect to an ergodic measure µ for almost every point x,

limn→∞
1

n + 1
Σn

i=0 u(fn(x)) =

∫
u dµ, (4.22)

for every u ∈ C(X). The left hand side is the time-average of the function
u along the orbit with initial point x and it equals the space-average on the
right.

For any f invariant measure µ it follows from (4.16) that the support, |µ|,
is an f invariant subset of X. The Poincaré Recurrence Theorem says that
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if U is any open set with U ∩ |µ| 6= ∅ then U is non-wandering. That is, for
some positive integer n, U ∩ f−n(U) 6= ∅. This is clear from the observation
that the open sets f−n(U) all have the same, positive measure and so they
cannot all be pairwise disjoint. Applying this to the subsystem obtained by
restricting to |µ| it follows from Theorem 2.2 that the set of recurrent points
in |µ| form a dense Gδ subset of |µ|.

If x ∈ Con(µ) then the orbit of x is dense in µ and so the subsystem on
|µ| is topologically transitive whenever Con(µ) is nonempty. By the Birkhoff
Ergodic Theorem this applies whenever µ is ergodic.

Since the support is a nonempty, closed, invariant subspace it follows
that if f is minimal then every invariant measure has full support. The
homeomorphism f is called strictly ergodic when it is minimal and has a
unique invariant measure µ, which is necessarily ergodic. In that case, it can
be shown that every point is a convergence point for µ, that is, Con(µ) = X.

We note that in the dynamical systems context the topological notion
of residual (that is, a dense Gδ subset) is quite different from the measure
theoretic idea (a set of full measure). For example,

Con =def

⋃

µ∈|f∗|
Con(µ) (4.23)

is the set of points whose associated Cesaro average sequence is a Cauchy
sequence. It follows that Con is a Borel set. By (4.21) µ(Con) = 1 for
every ergodic measure µ. Since every invariant measure is a limit of convex
combinations of ergodic measures it follows that Con has measure 1 for every
invariant measure µ.

On the other hand, it can be shown that if f is the shift homeomorphism
on X = AZ then for x in the dense Gδ subset of X the set of limit points of
the sequence {σn(f, x)} is all of |f∗|, Denker et al [30] or Akin [1] Chapter
9. Since the shift has many different invariant measures it follows that Con
is disjoint from this residual subset. In general, if a homeomorphism f has
more than one full, ergodic measure then Con is of first category, Akin [1]
Theorem 8.11. In particular, if f is minimal but not strictly ergodic then
Con is of first category.

The plethora of invariant measures undercuts somewhat their utility for
statistical analysis. Suppose that there are two different ergodic measures µ
and ν with common support, some invariant subset A of X. By restricting
to A, we can reduce to the case when A = X and so µ and ν are distinct full,
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ergodic measures. The sets Con(µ) and Con(ν) are disjoint and of measure
1 with respect to µ and ν, respectively. For an open set U the average
frequency with which an orbit of x ∈ Con(µ) lies is U is given by µ(U) and
similarly for ν. These mutually singular measures lead to different statistics.

One solution to this difficulty is to select what seems to be the best
invariant measure in some sense, e. g. the measure of maximum entropy
(see the article by King) if it should happen to be unique. However, as our
introductory discussion illustrates, this somewhat misses the point.

Return to the case of a chaotic attractor A, a closed invariant subset of
X. It often happens that the state space X comes equipped with a natural
measure λ or at least a Radon-Nikodym equivalence class of measures, all
with the same sets of measure 0. For example, if X is a manifold then λ is
locally Lebesgue measure. The measure λ is usually not f invariant and it
often happens that the set A of interest has λ measure 0. What we want,
an appropriate measure µ for this situation, would be an invariant measure
with support A, i. e.

µ ∈ |f∗| and |µ| = A, (4.24)

and an open set U containing A such that with respect to λ almost every
point of U is a convergence point for µ. That is,

λ(U \ Con(µ)) = 0. (4.25)

Notice that for x ∈ Con(µ), ωf(x) = |µ| = A and so by Corollary 3.7 A is a
terminal chain component. That is, for such a measure to exist, the attractor
A must be at least chain transitive. If, in addition, Con(µ) ∩ A 6= ∅ then A
is topologically transitive.

At least when strong hyperbolicity conditions hold this program can be
carried out with µ the Bowen measure for the invariant set, see Katok-
Hasselblatt [45] Chapter 20.

5 Minimality and Multiple Recurrence

In this section we provide a sketch of some important topics which were
neglected in the above exposition. We first consider the study of minimal
systems.

In Theorem 3.3 we defined a homeomorphism f on a compact space X
to be minimal when every point has a dense orbit. A subset A of X is a
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minimal subset when it is a nonempty, closed, invariant subset such that the
restriction f |A defines a minimal homeomorphism on A. The term “minimal”
is used because f |A is minimal precisely when A is minimal, with respect
to inclusion, in the family of nonempty, closed, invariant subsets. By Zorn’s
lemma every such subset contains a minimal subset. Since every system
contains minimal systems, the classification of minimal systems provides a
foundation upon which to build an understanding of dynamical systems in
general.

On the other hand, if you start with the space, homeomorphisms which
are minimal -on the whole space- are rather hard to construct. Some spaces
have the fixed-point property, i. e. every homeomorphism on the space has a
fixed point, and so admit no minimal homeomorphisms. The tori, which are
monothetic groups, admit the equicontinuous minimal homeomorphisms de-
scribed in the previous section. Fathi and Herman [34] constructed a minimal
homeomorphism on the 3-sphere. For most other connected, compact mani-
folds it is not known whether they admit minimal homeomorphisms or not.
It is even difficult to construct topologically transitive homeomorphisms, but
for these a beautiful -but nonconstructive- argument due to Oxtoby shows
that every such manifold admits topologically transitive homeomorphisms.
He uses that Baire Category Theorem to show that if the dimension is at
least two then the topologically transitive homeomorphisms are residual in
the class of volume preserving homeomorphisms, see [54] Chapter 18.

Since we understand the equicontinuous minimal systems, we begin by
building upon them. This requires a change in out point of view. Up to now
we have mostly considered the behavior of a single dynamical system (X, f)
consisting of a homeomorphism f on a compact metric space X. Regarding
these as our objects of study we turn now to the maps between such sys-
tems. A homomorphism of dynamical systems, also called an action map,
π : (X, f) → (Y, g) is a continuous map π : X → Y such that g ◦ π = π ◦ f
and so, inductively, gn ◦ π = π ◦ fn for all n ∈ Z. Thus, π maps the or-
bit of a point x ∈ X to the orbit of π(x) ∈ Y . In general, for the map
π × π : X ×X → Y × Y we have that

π × π(Af) ⊆ Ag for A = O,R,N,G,C

π × π(Θf) ⊆ Θg for Θ = ω, α, Ω, ΩC.
(5.1)

That is, π maps the various dynamic relations associated with f to the
corresponding relations for g.
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If π is bijective then it is called an isomorphism between the two systems
and the inverse map π−1 is an action map, continuous by compactness.

If X is a closed invariant subset of Y with f = g|X then the inclusion
map π is an action map and then (X, f) is called the subsystem of (Y, g)
determined by the invariant set X.

On the other hand, if π is surjective then (Y, g) is called a factor, or
quotient system, of (X, f) and (X, f) is called a lift of (Y, g). A surjective
action map is called a factor map.

For a factor map π : (X, f) → (Y, g) we define an important subset R(π)
of X ×X:

R(π) =def {(x1, x2) ∈ X ×X : π(x1) = π(x2)} = (π × π)−1(1Y ).
(5.2)

The subset R(π) is an ICER on X. That is, it is an invariant, closed equiv-
alence relation. In general, if R is any ICER on X then on the space of
equivalence classes the homeomorphism f induces a homeomorphism and
the natural quotient map is a factor map of dynamical systems. The original
factor system (Y, g) is isomorphic to the quotient system obtained from the
ICER R(π).

Notice that if (Y, g) is the trivial system, meaning that Y consisting of a
single point, then R(π) is the total relation X ×X on X.

We use the ICER R(π) to extend various definitions from dynamical
systems to action maps between dynamical systems. For example, a factor
map π : (X, f) → (Y, g) is called equicontinuous if for every ε > 0 there
exists δ > 0 such that

(x1, x2) ∈ R(π) and d(x1, x2) < δ =⇒ df (x1, x2) < ε. (5.3)

Comparing this with (4.2) we see that (X, f) is equicontinuous if and only if
the factor map to the trivial system is equicontinuous.

Similarly, recall that (x1, x2) ∈ X is a distal pair for (X, f) if
ω(f × f)(x1, x2) is disjoint from the diagonal 1X , and the system (X, f) is
distal when every nondiagonal pair is distal. A factor map π : (X, f) → (Y, g)
is distal when every nondiagonal pair in R(π) is distal. Again (X, f) is a distal
system if and only if the factor map to the trivial system is distal.

It is easy to check that a distal lift of a distal system is distal. Since an
equicontinuous factor map is distal, it follows that an equicontinuous lift of
an equicontinuous system is distal. However, it need not be equicontinuous.
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Example: If a is irrational then the rotation τa on the circle Y = R/Z,
defined by x 7→ a + x, is an equicontinuous minimal map. On the torus
X = R/Z× R/Z we define f by

f(x, y) =def (a + x, x + y). (5.4)

It can be shown that (X, f) is minimal. The projection π to the first coor-
dinate defines an equicontinuous factor map to Y, τa) and so (X, f) is distal.
It is not, however, equicontinuous.

The above projection map is an example of a group extension. Let G be
a compact topological group, like R/Z. Given any dynamical system (Y, g)
and any continuous map q : Y → G we let X = Y ×G and define f on SX
by:

f(x, y) =def (g(x), Lq(x)(y)). (5.5)

The homeomorphism commutes with 1Y × Rz for any group element z and
from this it easily follows that the projection π to the first coordinate is
an equicontinuous factor map. If (Y, g) is minimal then the restriction of
π to any minimal subset of X defines an equicontinuous factor map from
the associated minimal subsystem. It can be shown that any equicontinuous
factor map between minimal systems can be obtained via a factor from such
a group extension.

The Furstenberg Structure Theorem says that any distal minimal system
can be obtained by a -possibly transfinite- inverse limit construction, begin-
ning with an equicontinuous system and such that each lift is an equicon-
tinuous factor map. For the details of this and the structure theorem due
to Veech for more general minimal systems we refer the reader to Auslander
[17] Chapters 7 and 14, respectively.

The factor maps described above are projections from products. There
exist examples which are not product projections even locally. For example,
in Auslander [17] Chapter 1 the author uses a construction due to Floyd to
build an action map π between minimal systems which is not an isomorphism
but which is almost one-to-one. That is, for a residual set of points x in the
domain the set of preimages π−1(π(x)) is a singleton. Such a factor map
is the opposite of distal. It is a proximal map, meaning that every pair
(x1, x2) ∈ R(π) is a proximal pair.

Also, one cannot base all one’s constructions upon equicontinuous min-
imal systems. A dynamical system (X, f) is called weak mixing when the
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product (X×X, f×f) is topologically transitive. Inclusion (5.1) implies that
if a dynamical system is minimal, topologically transitive or chain transitive
then any factor satisfies the corresponding property. It follows that any fac-
tor of a weak mixing system is weak mixing. It is clear that only the trivial
system is both weak mixing and equicontinuous. Hence for a weak mixing
system the trivial system is the only equicontinuous factor. For a minimal
system the converse is true: if the trivial system is the only equicontinuous
factor then the system is weak mixing. Furthermore, nontrivial weak mixing,
minimal systems do exist.

Gottschalk and Hedlund in [38] introduced the idea using various special
families of subsets of N, the set of nonnegative integers, in order to distinguish
different sorts of recurrence. A family F is a collection of subsets of N which
is hereditary upwards. That is, if A ⊆ B and A ∈ F then B ∈ F. The family
is called proper when it is a proper subset of the entire power set of N, i. e.
it is neither empty nor the entire power set. The heredity property implies
that a family F is proper iff N ∈ F and ∅ 6∈ F. For a family F the dual family,
denoted F∗ (or sometimes kF) is defined by:

F∗ =def {B ⊆ N : B∩A 6= ∅ for all A ∈ F} = {B ⊆ N : N\B 6∈ F}.
(5.6)

It is easy to check that F∗∗ = F and that F∗ is proper if and only if F is.
A filter is a proper family which is closed under pairwise intersection. A

family F is the dual of a filter when it satisfies what Furstenberg calls the
Ramsey Property :

A ∪B ∈ F =⇒ A ∈ F or B ∈ F. (5.7)

For example, a set is in the dual of the family of infinite sets if and only
if it is cofinite, i. e. its complement is finite. The family of cofinite sets is a
filter.

A subset A ⊆ N is called thick when it contains arbitrarily long runs.
That is, for every positive integer L there exists i such that i, i+1, ...., i+L ∈
A. Dual to the thick sets are the syndetic sets. A subset B is called syndetic
or relatively dense if there exists a positive integer L such that every run of
length L meets B.

In (4.8) we defined the hitting time set N(U, V ) for (X, f) when U, V ⊆ X.
When U is a singleton {x} we omit the braces and so have

N(x, V ) = {n ≥ 0 : fn(x) ∈ V }. (5.8)
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It is clear that (X, f) is topologically transitive when N(U, V ) is nonempty
for every pair of nonempty open sets U, V . Furstenberg showed that the
stronger property that (X, f) be weak mixing is characterized by the condi-
tion that each such N(U, V ) is thick.

Recall that a point x ∈ X is recurrent when x ∈ ωf(x). The point is
called a minimal point when it is an element of a minimal subset of X in
which case this minimal subset is ωf(x). Clearly, point x ∈ X is recurrent
when N(x, U) is nonempty for every neighborhood U of x. Gottschalk and
Hedlund proved that x is a minimal point if and only if every such N(x, U)
is relatively dense. For this reason, minimal points are also called almost
periodic points.

Furstenberg reversed this procedure by using dynamical systems argu-
ments to derive properties about families of sets and more generally to derive
results in combinatorial number theory.

If f1, ..., fk are homeomorphisms on a space X then x ∈ X is a multiple
recurrent point for f1, ...., fk if there exists a sequence of positive integers
ni →∞ such that the k sequences {fni

1 (x)}, ..., {fni
k } all have limit x. That

is, the point (x, ..., x) is a recurrent point for the homeomorphism f1× ...×fk

on Xk. The Furstenberg Multiple Recurrence Theorem says:

Theorem 5.1 If f1, ..., fk are commuting homeomorphisms on a compact
metric space X, i. e. fi ◦ fj = fj ◦ fi for i, j = 1, ..., k , then there exists a
multiple recurrent point for f1, ..., fk.

Corollary 5.2 If f is a homeomorphism on a compact metric space X and
x ∈ X then for every positive integer k and every ε > 0 there exist positive
integers m,n such that with y = fm(x) the distance between any two of the
points y, fn(y), f 2n(y), ..., fkn(y) is less than ε.

Proof: This follows easily by applying the Multiple Recurrence Theorem
to the restrictions of the homeomorphisms f, f 2, ..., fk to the closed invariant
subset ωf(x). Obtain a multiple recurrent point y′ ∈ ωf(x) and then given
ε > 0 choose y = fm(x) to approximate y′ sufficiently closely.

2

These results are of great interest in themselves and they have been ex-
tended in various directions, see Bergelson-Leibman [24] for example. In
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addition, Furstenberg used the corollary to obtain a proof of Van der Waer-
den’s Theorem:

Theorem 5.3 If B1, ..., Bp is a partition of N then at least one of these sets
contains arithmetic progressions of arbitrary length.

Proof It suffices to show that for each k = 1, 2, .. and some a = 1, .., p the
subset Ba contains an arithmetic progression of length k + 1. For this will
then apply to some fixed Ba for infinitely many k. Let A = {1, ..., p} and on
X = AZ define the shift homeomorphism defined by (4.11). Using the metric
given by (4.9) and ε ≤ 1

2
we observe that if x, y ∈ X with d(x, y) < ε then

x0 = y0.
Choose x ∈ X such that xi = a if and only if i ∈ Ba for i ∈ N. Apply

Corollary 5.2 to x and ε. Choosing positive integers m,n such that the points
fm(x), fm+n(x), fm+2n(x), ..., fm+kn(x) all lie within ε of each other we have
that m,m + n, ..., m + kn all lie in Ba where a is the common value of the 0
coordinate of these points.

2

One of the great triumphs of modern dynamical systems theory is Fursten-
berg’s use of the ergodic theory version of these arguments to prove Sze-
merédi’s Theorem, [35] Theorem 3.21.

Theorem 5.4 Let B be a subset of N with positive upper Banach density,
that is

limsup|I|→∞ |B ∩ I| > 0, (5.9)

where I varies over bounded subintervals of N and |A| denotes the cardinality
of A ⊂ N. The set B contains arithmetic progressions of arbitrary length.

For details and further results, we refer to Furstenberg’s beautiful book
[35].

We conclude by observing that our restriction throughout to the dynamics
of homeomorphisms was a matter of expository convenience. Most of the
definitions and results extend to the case where f : X → X is a surjective
continuous map. One way of extending the theory is to use the natural
extension of f . This is obtained by using a sequence {Xn} of copies of X and
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pn = f for all n. On the inverse limit space X̃ we define the homeomorphism
f̃ by

f̃(x)n =def

{
f(x0) for n = 0,

xn−1 for n > 0.
(5.10)

Many dynamic properties hold for the map f on X if and only if they hold
for the homeomorphism f̃ on X̃.

6 Additional Reading

The approach to topological dynamics which was described in Sections 2 and
3 is presented in detail in Akin [1] and [2]. For the deeper, more specialized
work in topological dynamics see Auslander [17], Ellis [33] and Akin [4]. A
general survey of the field is given in de Vries [66]. Furstenberg [35] is a classic
illustration of the applicability of topological dynamics to other fields.

Clark Robinson’s text [56] is an excellent introduction to dynamical sys-
tems in general. More elementary introductions are Devaney [31] and Alli-
good et al [10]. Hirsch et al [40] provides a nice transition from differential
equations to the general theory.

Much of modern differentiable dynamics grows out of the work of Smale
and his students, see especially the classic Smale [61], included in the collec-
tion [62]. The seminal paper Shub and Smale [59] provides a bridge between
this work and the purely topological aspects of attractor theory, see also Shub
[58].

The fashionable topic of chaos has generated a large sample of writing
whose quality exhibits extremely high variance. For expository surveys I
recommend Lorenz [49] and Stewart [63]. An excellent collection of relatively
readable, classic papers is Hunt et al [43].

For applications in biology see Hofbauer and Sigmund [41] and May [50].
Also, don’t miss Sigmund’s delightful book [60].

47



7 Bibliography

[1 ] Akin E (1993) The General Topology of Dynamical Systems, Amer.
Math. Soc.,Providence, RI

[2 ] Akin E (1996) Dynamical systems: the topological foundations, in:
Aulbach B and Colonius F, (eds) Six Lectures on Dynamical Systems,
World Scientific, Singapore, pp. 1-43.

[3 ] Akin E (1996) On chain continuity, Discrete and Continuous Dynam-
ical Systems 2:111-120

[4 ] Akin E (1997) Recurrence in Topological Dynamics: Furstenberg Fam-
ilies and Ellis Actions, Plenum Press, New York

[5 ] Akin E (2004) Lectures on Cantor and Mycielski sets for dynamical
systems, in: Assani I, (ed) Chapel Hill Ergodic Theory Workshops,
Amer. Math. Soc., Providence, pp. 21-80

[6 ] Akin E, Auslander J and Berg K (1996) When is a transitive map
chaotic?, in: Bergelson V, March K and Rosenblatt J (eds) Conference
in Ergodic Theory and Probability, Walter de Gruyter, Berlin, pp. 25-
40

[7 ] Akin E and Glasner E (2001) Residual properties and almost equicon-
tinuity, J d’Analyse Math 84:243-286

[8 ] Akin E, Hurley M and Kennedy, JA (2003) Dynamics of Topologically
Generic Homeomorphisms, Memoir 783, Amer. Math. Soc.,Providence,
RI

[9 ] Alexopoulos J (1991) Contraction mappings in a compact metric
space, Solution No.6611, Math. Assoc. Amer. Monthly 98:450

[10 ] Alligood KT, Sauer TD and Yorke JA (1996) Chaos: An Introduction
to Dynamical Systems, Spring Science- Business Media, New York

[11 ] Almgren FJ (1966) Plateau’s Problem, W. A. Benjamin, Inc., New
York

[12 ] Alpern SR and Prasad VS (2001) Typical Dynamics of Volume Pre-
serving Homeomorphisms, Cambridge Univ. Press, Cambridge

48



[13 ] Arhangel’skii AV and Pontryagin LS (eds.)(1990) General topology I,
Springer-Verlag, Berlin

[14 ] Arhangel’skii AV (ed.)(1995) General Topology III, Springer-Verlag,
Berlin

[15 ] Arhangel’skii AV (ed.)(1996) General Topology II, Springer-Verlag,
Berlin

[16 ] Auslander J (1964) Generalized recurrence in dynamical systems, in:
Contributions to Differential Equations vol. 3, John Wiley, New York,
pp. 55-74

[17 ] Auslander J (1988) Minimal Flows and Their Extensions, North-
Holland, Amsterdam

[18 ] Auslander J, Bhatia N and Siebert P (1964) Attractors in dynamical
systems, Bol. Soc. Mat. Mex. 9:55-66

[19 ] Auslander J and Siebert P (1963) Prolongations and generalized Lia-
punov functions in: International Symposium on Nonlinear Differential
Equations and Nonlinear Mechanics, Academic Press, New York, pp.
454-462

[20 ] Auslander J and Siebert P (1964) Prolongations and stability in dy-
namical systems, Ann. Inst. Fourier, Grenoble 14, 2:237-268

[21 ] Auslander J and Yorke J (1980) Interval maps, factors of maps and
chaos, Tohoku Math. J. 32:177-188

[22 ] Banks J, Brooks J, Cairns G, Davis G and Stacey P (1992) On De-
vaney’s Definition of Chaos, Amer. Math. Monthly 99: 332-333

[23 ] Barrow-Green J (1997) Poincaré and the Three Body Problem, Amer.
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