

Name:
Quiz 1

1. (5 points) Solve the system $\left\{\begin{array}{l}4 x+3 y=2 \\ 7 x+5 y=3\end{array}\right.$

ID: \qquad

1. \qquad
2. (5 points) Solve the system $\begin{cases}x+y-z & =0 \\ 4 x-y+5 z & =0 \\ 6 x+y+4 z & =0\end{cases}$
3. \qquad
4. (5 points) Solve the system $\left\{\begin{array}{ll}x-2 y & =3 \\ 2 x-4 y & =8\end{array}\right.$ Represent your solution graphically.
5. \qquad

Quiz 2

1. (5 points) For which values of k does the system $\left\{\begin{aligned} x+2 y+3 z & =0 \\ x+3 y+8 z & =0 \\ x+2 y+2 z & =k\end{aligned}\right.$ have infinitely many solutions.
2. \qquad
3. (5 points) Find all solutions of $\begin{cases}x+y & =1 \\ 2 x-y & =5 \\ 3 x+4 y & =2\end{cases}$
4. \qquad
5. (5 points) Find all solutions of $\begin{cases}x_{1}+2 x_{3}+4 x_{4} & =-8 \\ x_{2}-3 x_{3}-x_{4} & =6 \\ 3 x_{1}+4 x_{2}-6 x_{3}+8 x_{4} & =0 \\ -x_{2}+3 x_{3}+4 x_{4} & =-12\end{cases}$
6.

Quiz 3

1. (5 points) (True/False) A linear system with more unknowns than equations must have infitely many solutions or none.
2. \qquad
3. (5 points) (True/False) The rank of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right]$ is 3 .
4. \qquad
5. (5 points) Describe the linear transformation $T(\vec{x})=\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right] \vec{x}$ geometrically. (HINT: It may be helpful to draw the image of the "L" shape as is done in our textbook).
6. \qquad

Quiz 4

1. (5 points) (True/False) A linear system with more unknowns than equations must have infitely many solutions or none.
2. \qquad
3. (5 points) (True/False) The rank of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right]$ is 3 .
4. \qquad
5. (5 points) Describe the linear transformation $T(\vec{x})=\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right] \vec{x}$ geometrically. (HINT: It may be helpful to draw the image of the "L" shape as is done in our textbook).
6. \qquad

Quiz 5

1. (5 points) Find A^{4} when $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
2. \qquad
3. (5 points) Decide if the matrix $A=\left[\begin{array}{ccc}1 & 0 & 10 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is invertible. If it is find its inverse.
4. \qquad
5. (5 points) (True/False) There is a matrix A so that $A\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$.
6.

Quiz 6

1. (5 points) If $\vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is in the span V of the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}1 \\ 4 \\ 8\end{array}\right]$, find the coordinates of \vec{x} with respect to the basis of V determined by $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. If \vec{x} is not in V write, "not in V ".
2. \qquad
3. (5 points) For which value(s) of the constant k do the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4 \\ k\end{array}\right]$ form a basis of \mathbb{R}^{4} ?
4. \qquad
5. (5 points) Consider a linear transformation from T from \mathbb{R}^{5} to \mathbb{R}^{3}. What are the possible values of nullity of T.
6. \qquad

Quiz 7

1. (5 points) Find the matrix B of the linear transformation $T(x)=A x=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ with respect to the basis $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
2. \qquad
3. (5 points) Find a basis of the plane \mathbb{R}^{2} so that the matrix B of the mirror reflection T of \mathbb{R}^{2} over the line spanned by $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a diagonal matrix.
4. \qquad
5. (5 points) Find a basis for the space of all diagonal 2×2 matrices.
6.

Quiz 8

1. (5 points) (True/False) The vectors $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right],\left[\begin{array}{ll}1 & 4 \\ 6 & 8\end{array}\right]$ are linearly independent.
2. \qquad
3. (5 points) Find the matrix B of the linear transformation $T(f)=3 f^{\prime}-4 f$ from P_{2} to P_{2} with respect to the basis $\mathfrak{U}=\left(1, t, t^{2}\right)$.
4. (5 points) Find the orthogonal projection of $\left[\begin{array}{l}6 \\ 0 \\ 0 \\ 0\end{array}\right]$ onto the subspace of \mathbb{R}^{4} spanned by $\left[\begin{array}{c}2 \\ 2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 1\end{array}\right]$.
5.

Quiz 9

1. (5 points) Find the least squares solution to the system $A x=b$ when $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}-6 \\ -6 \\ -6\end{array}\right]$.
2.
3. (5 points) Find the best fit linear function of the form $f(t)=c_{0}+c_{1} t$ to the data points $(0,-2),(1,-2),(1,-6)$ using least squares.
4. \qquad
5. (5 points) Evaluate det A when $A=\left[\begin{array}{ccc}10 & 20 & 30 \\ 4 & 5 & 6 \\ 7 & 8 & 10\end{array}\right]$.
6. \qquad

Quiz 10

1. (5 points) Find an eigenvector of $A=\left[\begin{array}{cc}-6 & 6 \\ -15 & 13\end{array}\right]$ with corresponding eigenvalue 4 .
2. \qquad
3. (5 points) Find the eigenvalue of $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right]$ associated to the eigenvector $\left[\begin{array}{c}2 \\ -3\end{array}\right]$.
4. \qquad
5. (5 points) Find the classical adjoint of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$.
6. \qquad

Quiz 11

1. (5 points) Find all real eigenvalues of $A=\left[\begin{array}{cc}4 & 5 \\ -2 & -2\end{array}\right]$ with their multiplicities
2. \qquad
3. (5 points) Find all real eigenvalues of $A=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 2 & 1 & 2 & 2\end{array}\right]$ with their multiplicities
4. \qquad
5. (5 points) Find an eigenbasis of $A=\left[\begin{array}{ll}6 & 3 \\ 2 & 7\end{array}\right]$. Write NONE on the answerline if there is no eigenbasis.
6.
