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It is a profoundly erroneous truism repeated by all copybooks,
and by eminent people when they are making speeches, that we
should cultivate the habit of thinking of what we are doing. The
precise opposite is the case. Civilization advances by extending
the number of operations which we can perform without thinking
about them. Operations of thought are like cavalry charges in
battle - they are strictly limited in number, they require fresh
horses, and must only be made at decisive moments.

-Alfred North Whitehead, Introduction to Mathematics

In The Schools We Need and Why We Don’t Have Them E. D. Hirsch
provides the quote which will be our Scripture passage for today’s sermon.
Following Whitehead, I propose to defend not thinking, to consider the rela-
tionship between thinking and not thinking and to describe how symbolism
- particularly in mathematics - facilitates not thinking. Above all, I want to
argue that all this avoidance of thought is a Good Thing.

In some areas all this is noncontroversial, even obvious. Consider such
practices as cooking, carpentry, playing a musical instrument, horseback rid-
ing and other sports. Each builds upon a foundation of physical skills and in
each case mastery consists of performing with automatic facility. As a begin-
ner you move slowly, thoughtfully, with conscious attention. In a disciplined
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way you repeat the same movements again and again. Think of Audrey
Hepburn at the cooking school in Sabrina: ”one-two-three, crack. New egg.
One-two-three, crack. New egg...” Think of the scales and arpeggios with
which as a budding pianist you train your hands. As you practice, you speed
up and your movements alter so that they are less in your mind than ”in your
fingers”. The skill is gradually incorporated into muscle memory. Similarly
when you learn a new piece, you move via repeated practice from conscious
attention to unconscious mastery. The transformation is not irrevocable.
When you discover yourself repeatedly making an error in a passage or you
need to change the fingering, you slow up again, consciously overriding the
automatic response and practicing until the correct procedure has replaced
the old one. That is, the movement, lifted up for conscious repair, is now
allowed to sink back down into your fingers.

Understanding just what you are doing and why you are doing it is not
essential in learning these skills. It can even be an impediment if it is re-
garded as a substitute for the boring repetition that practicing a skill requires.
Someone who “knows how to hold a pool cue” probably doesn’t, if he hasn’t
practiced much shooting. As Yogi Berra is supposed to have said: “In theory,
theory and practice are the same thing. But in practice they aren’t.”

The understanding provided by an explanation can be helpful, but pri-
marily as motivation for the discipline required. When the teacher says: “Use
this fingering instead of that one.” Your question: “Why should I change?”
is legitimate, especially as you are probably used to the old one and so find
the effort of changing to be a bother. The teacher explains: “For a simple
passage it doesn’t make much difference, but for the kinds of complicated
passages that you will get to later, you can see that what you are doing will
be awkward and will break the flow. The point is to develop the right habit
now so that you don’t have to change it later.” This sort of helpful justifica-
tion is good teaching, much better than: “Because I say so.” But in any case
the student does the correction work attending to the action rather than to
its purpose.

Of course, all of these arts involve thinking, but the thought occurs at
higher levels which are built upon a foundation of unthinking facility. You
think about how to vary a sauce not how to crack an egg, about what is the
appropriate emphasis for a musical passage not what note is flat in the key
of F. In competitive sports your tactical decisions assume the background
skills are in place.

Horseback riding provides an especially interesting example of the rela-
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tionship between thought and automatic muscle skills. Equitation underwent
a full-scale Kuhnian revolution in the early twentieth century when an Italian
cavalry captain named Caprilli began thinking seriously about the dynamics
of the horse and horse-plus-rider in motion. The result was the modern For-
ward Seat or Hunt Seat. Manuals like Vladimir Littauer’s Common Sense
Horsemanship spend a great many pages explaining why the rider should
hold his body in particular ways. Since proper riding posture is hard to
develop, all this explanation provides motivation in the form of helpful jus-
tification. But you still have to practice and practice, ride and ride, so that
your body will ride the horse. There is a great deal of New Age, “Use the
Force, Luke” talk about feeling and instinct in horsemanship, especially be-
cause you are trying to learn to feel the horse’s body as well as your own. But
again, correction requires conscious attention. “How many times have I told
you? Don’t lean your body like that when you take off into a canter. Your
weight unbalances the horse.” “O yes. Got to remember. Think. Think.”

All these have been examples of physical skills. Even granting all I have
said, you might argue that none of this applies to the mental activities which
are the concerns of English and Mathematics teachers. I claim, instead,
that learning to read and use symbolic systems are mental analogues of the
physical skills considered above. Success at learning the alphabet, for ex-
ample, consists in recognizing the letters instantly without conscious effort.
A dyslexic can pause and work out the difference between a ”d” and a ”b”.
What is lacking is the automatic recognition response which easy facility in
reading requires. This mirror symmetry between different letters illustrates
that avoidable flaws can occur in symbolic systems and then be retained by
tradition. Such symmetries do not occur in the Cyrillic alphabet. I wonder
if it affects the frequency or severity of dyslexia among readers of Russian.

The issue of rote facility, or lack thereof, lurks in the background even in
relatively advanced courses. Teachers of elementary calculus will recognize
certain excuses that students give after bad test results: “I really understand
it, but ...” and ”I just didn’t have enough time.” In this respect doing calculus
is like shooting pool. It is not enough to see the logic of the Product Rule
or Chain Rule. It is necessary to do a lot of drill problems as homework so
that the use of the routines becomes automatic for uncomplicated examples.
This is also the reason that tests are given with time limits. Speed per se is
not that important. However, just as with piano playing, performance with
a reasonable amount of speed requires that the steps begin to move out of
conscious control. It is this automatic facility which is being tested for. A
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slow, stumbling performance often indicates a lack of practice.
The Order of Operations Rules provide a good example of the need for

unconscious adaptation comparable to a feel for the horse. The expression
2 + 3 · 5 is ambiguous, an ambiguity which can be resolved by using
parentheses. Thus,

(2 + 3) · 5 = 5 · 5 = 25

while
2 + (3 · 5) = 2 + 15 = 17.

To reduce the number of parentheses, which can become cumbersome in
complicated expressions, a new rule is introduced into the symbolism. When
written without parentheses the expression is defined to mean either the
first expression yielding 25 or the second yielding 17. The new rule is a
convention which is then built into the symbolism. If the rule were “always
do the operations in order from left to right” then the ambiguity would
resolve to the 25. However, what has been chosen is the rule “multiplication
has priority over addition” and so without parentheses the expression means
multiply first to get 17. Students are taught this rule but when it is learned
properly it is rarely consciously applied. Instead, you are trained to read and
write the symbols so that multiplication provides a tighter linkage between
the symbols than addition does. When your eye has been trained properly
you see the expression as though it had been written 2 + 3 ·5 and
to the trained eye an expression written 2+3 · 5 “looks wrong”. When
extending the rules to include exponents, for example, you tend to refer back
to the formal list of Order of Operations but after some practice these new
extensions are also incorporated into your use of the symbolism.

This example illustrates that all sorts of complications and subtleties
are hidden within effective symbol systems. That is why they require a lot
of practice but it is also why their use is so effective. Like a well charged
battery such a system has the capacity to store a lot of energy which can then
provide considerable light when used properly. Just as the student rider does
not need to know about the subtle concerns which lead to the development
of the Forward Seat, so also the beginning math student need only learn to
recognize and to properly manipulate the symbols. In each case, the teacher
should know more about the hidden issues and at times it is helpful for the
student to take note of them as well.
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There is an obvious answer to all this. You don’t have to worry about how
to sit a horse if you plan to travel exclusively by car or plane. Why should
a student who is equipped with a calculator be subjected to the tedium of
learning the multiplication tables and the associated algorithm? Being able
to solve Mixture Problems is not especially important for most people, but
the understanding of units of measurement, obtained by thinking about such
problems, can be quite useful. Granted that the symbol manipulation allows
the student to avoid thinking, doesn’t this mean that using such systems
circumvents the very lessons we should be teaching? Like the arcana of the
Forward Seat the specialized language of algebra should perhaps be reserved
for the perverse few who take an interest in that sort of thing.

All this means that instead of merely brandishing Whitehead’s quote I will
have to defend it in detail. To make my case I will consider some illustrative
bits of mathematical symbolism.

When I was in elementary school we were told that long division was con-
sidered an advanced subject back in the Middle Ages. This had the desired
effect of motivating us to learn the long division algorithm and instilling in us
great pride when we succeeded. Our sense of superiority to all those monks
was of course misplaced. Instead we should have been feeling appreciation
and gratitude for the Arabic number system.

The most direct solution to the problem of written notation for numbers
is to put down the correct number of marks, e.g. represent 17 by seventeen
vertical strokes. This is inefficient for numbers beyond ten or so but even for
smaller numbers you run into what I will call the “pigeon problem”. Pigeons,
like human beings, can distinguish at a glance between a group of two and
a group of three. They cannot distinguish between a group of seven and a
group of nine. Humans can but they have to count (unless the groups are
arranged in recognized conventional patterns like the faces of playing cards).
A common solution for low level counting is to group the vertical strokes
and to write every fifth as an angled slash over groups of four. The pigeon
problem reasserts itself once you get past thirty-five or so because then you
have more than seven blocks of five. Roman numerals solve the problem
by using conventional symbols for large size groups plus a few simple rules.
With a little practice (required of elementary school students in an era before
mine) you can recognize at a glance the number so represented. However,
you will need new symbols as the numbers get bigger and, more seriously,
the notation is not well adapted to arithmetic operations. All these problems
are solved by the Arabic number system with zero as a place holder. (The
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pigeon problem recurs for the Arabic number system to be solved by scientific
notation and it could in principle recur even for scientific notation but the
numbers where the problems arise are larger than science is required to deal
with, e. g. 10 ∧ (10 ∧ (10 ∧ (10 ∧ 10))) .) Notice that the problem that
number notation tries to solve is: how can I recognize a number in the same
immediate way that I read a word?

It is worthwhile showing students the physical basis for arithmetic op-
erations. Addition comes from the observation that, in general, the count
obtained when you push together two heaps of objects depends only on the
count in each heap and not on the contents (except when you mash some
things together or something falls off the table). Multiplication results from
repeated addition: “As I was going to St. Ives, I met a man with 7 wives.
Every wife had 5 sacks. Every sack had 3 cats and every cat had 10 kits. How
many kittens are there?” Similarly, subtraction is introduced as “takeaway”
(the reverse of pushing together for addition) and division is introduced with
“gazinta”. (As in 3 gazinta 15 but when 3 gazinta 17 there are 2 left over.
Notice that after a while you slide into saying there is 2 left over, referring to
the number which is the remainder rather than to the objects being counted.)

Having introduced such operations physically, it is important to introduce
the symbolic notation as well and to insist that the students memorize the
single digit addition rules and times tables. In aid of this, flash cards are a
dandy device (O horrors). For some reason the prejudice has arisen that to
demand students memorize poems or patterns is a form of child abuse. In
fact, the ability to commit things to memory is a useful skill and like every
such skill it improves with practice.

As students learn the notation of arithmetic they unconsciously learn
various properties which are hidden in the notation. It is useful to let such
hidden aids do their work. For example, the commutative law of addition:
5 + 2 = 2 + 5 is obvious from the physically symmetric way that ad-
dition is defined. On the other hand, the commutative law of multiplication
5 · 2 = 2 · 5 is not obvious. However, students will think it is because
of the similarity between addition and multiplication notation. Let them.
There is no particular reason to use the rectangle picture of multiplication in
the beginning. Its purpose, grouping first by rows and then by columns, is
to provide a proof of the commutative law for multiplication. However, one
should never go through the proof of a result which is (1) true and (2) re-
garded as obvious by the class. The time to raise the issue of commutativity
is when exponents are introduced. One can then note that the commutative
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law for exponentiation, i.e. repeated multiplication, is false while for multi-
plication, i.e. repeated addition, it is true. This comparison has no punch
unless the students have been using for years the fact that the order doesn’t
matter in multiplication. In fact, you can get away without mentioning it
even when exponents come up because the superscript notation for exponen-
tiation is so asymmetric that students don’t expect commutativity (at least
until the notation 2 ∧ 3 is introduced).

An example of an especially nasty dog that you want to leave sleeping
beneath a blanket of notation is the different meanings of the minus sign.
I didn’t notice, until I had been teaching for years and acquired my first
calculator, that the symbol ” - ” has three different meanings: (1) subtraction,
a binary operation, e.g. 5 − 2, (2) the negative sign which together with
the absolute value comprises a negative signed number, e.g. -2, (3) changing
the sign, a unary operation, as in −x. Once you notice this, you realize
that the rule for subtracting signed numbers is just like the rule for dividing
fractions. That is, to divide two fractions, you convert to multiplication by
inverting the second fraction, i.e. multiply by the reciprocal. Similarly, here
is the pedantic procedure for 3 − (−2) : In order to subtract negative 2,
convert to addition by changing the sign of negative 2 to obtain positive 2
which, when added to 3 yields 5. This is an unnecessary mental exertion and
a waste of some useful ambiguity. The reason that the same symbol is used
for the three different meanings is so you can blur them. The way to think
instead of −(−2) is as minus signs multiplied onto the following number.
Then minus times a minus is plus . . .

Fractions are introduced by changing the physical model of division from
the gazinta picture, separation of a heap into a number of smaller heaps of
equal count, to the division of a continuous quantity like a line or a circle, e.
g. a pie, into pieces of equal size. The fraction notation deliberately blurs the
two pictures. The residue of the two models is revealed in the two different
ways of reading the fraction 2

3
i.e. as ”two over three” or as ”two thirds”. As

before, I believe that in teaching arithmetic of fractions you should let the
symbolic notation carry the student along. Thus, multiplication of fractions
should be regarded as easy because you do just what the notation suggests
you should do:

2

3
× 5

7
=

10

21
.

7



But the logical rule for addition for addition of fractions ought to be:

2

3
+

5

7
=

7

10
.

So you use the pie model to explain why the addition rule doesn’t work
the nice way it “should”. That is, 2 fifths + 1 fifth is 3 fifths
because you are counting fifths, i.e. the top of the fraction is the count and
the bottom is the units you are counting, just like 2 inches + 1 inch
is 3 inches. Then the complicated LCD rule is explained as converting to
common units, as in 2 inches + 1 foot equals 2 inches + 12 inches and
so is 14 inches. Once again, this sort of explanation provides the motivation
for learning the relatively complicated routine involved in adding fractions.
But just as the piano teacher’s explanation for the change in fingering does
not substitute for the practice of learning the new pattern, so too, the routine
of addition of fractions has to be acquired by practicing a lot of examples
until it becomes as automatic as a passage of music. Similarly, the “invert
and multiply” rule can and should be explained but then has to become an
automatic routine.

The same sort of natural relationship between explanation and drill occurs
in algebra. The classical picture of an equation as a balance scale justifies the
rules used for solving equations but facility in solving them requires practice.

I believe that most mathematicians share my belief that systems like the
Arabic number notation with the associated algorithms for multiplication and
division, and the symbolisms of fractions and of algebra are really triumphs
of human ingenuity and that to learn them is to acquire tools of great beauty
as well as power. We strongly feel that their use should be encouraged rather
than avoided. However, this kind of preaching appeals only to the already
converted. On the other hand, there are much more utilitarian reasons for
acquiring these techniques.

My real defense of all this symbolic manipulation is that it is easy. I
hasten to add that when I speak of solving a system of two simultaneous
linear equations in two unknowns as easy, I am using the word ”easy” as
a term of art. None of this stuff is easy when you start learning it. But
these routines all have the capacity to become easy given disciplined practice.
They are easy after they have become automatic. Furthermore, this is the
way students can and do react after they have learned it. Looking back they
should be thinking: ”That stuff from six months ago is really easy. I can’t
remember why I thought it was so hard. Now this new stuff though...”
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What is hard is thinking. Despite the initial quote, neither Whitehead nor
I really intend to disparage thinking. The algorithms and algebra routines
are resources which can be deployed to help with problems where thought is
required.

For example, I think it is safe to say that the hardest part of elementary
algebra is the so-called word or story problems. What is hard about them
is the thinking required to interpret the verbal descriptions. The student
succeeds by a process of translation into algebra by which the problem is
reduced to an algebraic equation. The term “reduce” here means replace the
original verbal statement by an algebra problem. This will only work when
the student regards the algebra as easy, at least by comparison.

There are many examples where thinking about complicated matters
builds upon a foundation of easy familiarity with earlier algebra. For ex-
ample, learning to manipulate units is fundamental in scientific research but
also in the practices of nursing and cooking. The key is to recognize that
the word “per” (Latin for “through”) always means “divide”. For example,
“miles per hour” means ”miles divided by hours” or just ”miles over hours”.
Then conversion to “feet per second” uses the fact that units cancel just
the way numbers do in multiplication of fractions. This makes conversions
of units fairly straightforward to deal with but only for students who are
comfortable with the routines of multiplying fractions.

Next, consider 2 . The calculator says it is 1.4142135623731 and when
you check by squaring the calculator gives you 2 . But the classic long
multiplication rule reveals that this cannot be exactly correct.

1.4142135623731

× 1.4142135623731

14142135623731

... 193

....

....

.... 1

So when you actually multiply out what you get is a long decimal ending
with a 1 . Since it is neither 2.0000 nor 1.99999... the big thing you squared
is not exactly the square root of 2. This argument requires that the student
remembers the long multiplication routine.
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Not everything that you learn has to be at your fingertips. However, there
are lots of tricks that you have to learn well the first time so that when you
need them later you can easily relearn them. The method of Completing the
Square is learned and then gratefully forgotten after it has been used to get
the Quadratic Formula. However, the return of the repressed occurs first in
analytic geometry and later in some integration techniques. You have to be
able to say “O yeah. How did that go again?” and then dust it off with a
few examples once it is retrieved from storage in the mental attic.

On the other hand, mathematics is cumulative and there are a great many
skills that you have be unthinkingly familiar with. Every grumpy calculus
teacher will tell you that most of the problems his students have come from
weaknesses in algebra. For the students who say “I really understand it
but....” the but is that for them algebra is not easy background knowledge.
They are trying to build on a foundation of dust. A lot of college majors
need a bit of calculus or statistics which are simply walled off to students who
don’t have sufficient skills in algebra. These are basically not hard subjects
but they appear unnecessarily terrifying to such students.

Conversely, a practiced facility with algebra can provide its own positive
reinforcement. Not only is the mathematics built on the algebra, but facil-
ity in algebra gives the student confidence in the face of new mathematical
challenges. As the above discussion makes clear such confidence is entirely
justified.

After this salvo of opinions perhaps some diplomacy would not be out
of place. These education debates arise from serious disagreements about
matters which we all regard as important. However, with an optimistic
attitude nourished by complete inexperience with actual political struggles,
I believe that some grounds for compromise exist with what my high school
debate teammates would call “my worthy opponents”.

Think of the pictures and stories that move them both positively and
negatively. The bad first: the kind of soul-destroying teaching portrayed in
Dickens’ Hard Times with students pounding away at mind-numbing, hateful,
tedious tasks, working in a spirit not so different from the exploited children
of nineteenth century factories. (I can’t resist quoting a little poem by Sarah
Cleghorn:
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The golf links lie so near the mill
That almost every day
The laboring children can look out
And see the men at play. )

Who doesn’t want to get away from that?
The positive vision has a common appeal as well. The hope is to try to

tap into the natural desire that children have to learn. The title of Gopnik,
Meltzoff and Kuhl’s delightful study The Scientist in the Crib is deliberately
ambiguous as they document how even preverbal infants investigate the world
around them. How much might be accomplished could we but stimulate in
class the mongoose-like curiosity that children naturally have. (Think of the
motto of Kipling’s Rikki-Tikki-Tavi: “Run and find out.”)

We traditionalists may insist on the value of drill but we don’t have a
commitment to making education boring and hateful. We don’t accept the
judgment of my old elementary school pal who said to me, when we saw
the section in our English book labeled Spelling Can Be Fun, “Spelling isn’t
supposed to be fun.” Instead, we hope to organize the work in ways that make
it interesting. Imagination is needed to design intellectually serious education
which is also exciting, but examples do exist. As for the drill and practice,
some of which is simply essential, we hope to convince the students as well as
the teachers that all this work will pay off. One of my old German teachers,
a sweet man, inappropriately named Anger, used to tell us “You will love it
when you have learned the prepositions that take the Dative.” Wise guys all,
we used to pretend we were uncertain whether he was giving us a prediction
or an order. The analogue for algebra of his message is what we are trying to
get across. But in addition, we have to maintain for Mathematics, as firmly
as he did for German, that success requires Sitzfleisch.

I believe that we can successfully make the case that algorithms and
symbolic manipulation provide good value. That is, the benefits of these
skills are quite substantial. The final argument will then occur over the cost
in time and sweat which it is reasonable to exact from students in order for
them to acquire these goods. An agreeable balance will be hard to achieve,
but I hope that we can simplify the arguments so that in the end we are (in
the words of the old joke the details of which I will omit) “just haggling over
price.”
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