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These notes are a supplement for Math 39104 to the book Elementary
Differential Equations and Boundary Value Problems by Boyce and DiPrima.
At the end of the notes you will find the detailed syllabus and homework
assignments.

1 First Order Differential Equations

A first order differential equation is an equation of the form

x′ =
dx

dt
= f(x, t). (1.1)

It describes that rate at which a point at x is moving on the real line R at
time t. A solution is a function x(t) which satisfies the equation.

While we often interpret a differential equation this way, in terms of
motion, what is needed is to keep track of which is the independent variable
(in this case t) and which is the dependent variable (in this case x). Almost
as often as this, we will see the equation written as y′ = dy

dx
= f(y, x).

with independent variable x and dependent variable y, but any letter can be
used for either variable.
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The simplest case is when f(y, x) depends only on x. That is, we are
given the derivative and solve by integrating. When we integrate we get
y =

∫
f(x)dx + C where C is the arbitrary constant of integration. This

illustrates that a differential equation usually has infinitely many solutions.
In this case, changing C moves the graph up or down and a particular solution
is determined by specifying a point (x0, y0) through which it passes. In
general, an initial value problem ( = IVP ) is a differential equation together
with a choice of such a point.

dy

dx
= f(y, x). and y(x0) = y0. (1.2)

The name “initial value problem” comes from the fact that often the initial
value for (1.1) is given by specifying x = x0 at the time t = 0.

For example, linear growth is given by dx
dt

= m with the rate of change
constant. If x(0) = x0 then the solution is x = x0 +mt.

The differential equation is called autonomous when f(x, t) depends only
on x. That is, the rate of change depends only upon the current position
and not the time. Thus, dx

dt
= f(x). For such an equation the roots

of f play a special role. If f(e) = 0 then x = e is called an equilibrium
for the equation because the constant function x(t) = e is then a solution.
The most important, and simplest, example is exponential growth given by
dx
dt

= rx and so when x ̸= 0, ln |x| changes linearly. That is, if x(0) = x0

then ln |x| = ln |x0| + rt. Exponentiating we get x = x0e
rt. Notice that

this description includes the equilibrium solution x = 0 with x0 = 0. When
r < 0 the equilibrium at 0 is an attractor. Solutions starting near 0 (and in
this case all solutions) move toward this equilibrium with limit 0 as t → ∞.
When r > 0 the solution is a repellor. Solutions starting near 0 move away
from it.

When f has more than one root then the system has more than one
equilibrium. On each of the intervals between two equilibria, f is either
strictly positive or strictly negative and so a point in such an interval moves
up or down towards the equilibria at the end-point. Consider the examples:

(i)
dx

dt
= −x + x3.

(ii)
dx

dt
=

{
x2 cos(1/x) x ̸= 0,

0 x = 0.

(1.3)
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Exercises 1.1. For each of the following autonomous equations, draw a
diagram marking the equilibria and the direction of motion in the comple-
mentary intervals. Indicate which equilibria are attracting and which are
repelling.

(a)
dx

dt
= 2x− x2.

(b)
dx

dt
= (x4 − x3 − 2x2)(x− 5).

2 Vectors and Linear Maps

You should recall the definition of a vector as an object with magnitude and
direction (as opposed to a scalar with magnitude alone). This was devised as
a means of representing forces and velocities which exhibit these vector char-
acteristics. The behavior of these physical phenomena leads to a geometric
notion of addition of vectors (the “parallelogram law”) as well as multiplica-
tion by scalars - real numbers. By using coordinates one discovers important
properties of these operations.

Addition Properties

(v + w) + z = v + ( w + z).

v + w = w + v.

v + 0 = v.

v + −v = 0.

(2.1)

The first two of these, the Associative and Commutative Laws, allow us to
rearrange the order of addition and to be sloppy about parentheses just as
we are with numbers. We use them without thinking about them. The third
says that the zero vector behaves the way the zero number does: adding it
leaves the vector unchanged. The last says that every vector has an “additive
inverse” which cancels it.
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Scalar Multiplication Properties

a(bv) = (ab)v.

1v = v.
(2.2)

The first of these looks like the Associative Law but it isn’t. It relates
multiplication between numbers and scalar multiplication. The second says
that multiplication by 1 leaves the vector unchanged the way the addition
with 0 does.

Distributive Properties

a(v + w) = av + aw.

(a + b)v = av + bv.
(2.3)

These link addition and scalar multiplication.
In Linear Algebra we abstract from the original physical examples. Now

a vector is just something in a vector space. A vector space is a collection
of objects which are called vectors. What is special about a vector space
is that it carries a definition of addition between vectors and a definition
of multiplication of a vector by a scalar. For us a scalar is a real number,
or possibly a complex number. We discard the original geometric picture
and keep just the properties given above. These become the axioms of a
vector space. Just from them it is possible to derive various other simple,
but important properties.

av = 0 ⇐⇒ a = 0 or v = 0.

(−1)v = −v.
(2.4)

We won’t bother with the derivation because such properties will be obvious
in the examples we will consider.

Those examples will either be lists of numbers or real-valued functions.
For example, the vector spaces R2 and R3 were described in Math 203. These
consists of all lists of two or three numbers, but such a list could have any
size (or shape). You should be able to imagine for yourself how you add
vectors and multiply by scalars in R17. For real-valued (or complex valued)
functions we define

(f + g)(x) = f(x) + g(x).

(af)(x) = a(f(x)).
(2.5)
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These again look like the distributive law and the associative law, but they
are not. Instead, starting with two functions f and g the right hand side in
each case is used to define the new functions labeled f + g and af .

Given a finite list of vectors, like v1,v2,v3, it is possible to build from
them infinitely many vectors from them by using the vector space operations.
A linear combination of them is a vector C1v1 + C2v2 + C3v3 obtained by
choosing scalars C1, C2, C3.

A set of vectors in a vector space is a subspace when it is closed under
addition and scalar multiplication. In that case, it is a vector space in its
own right. For example the functions which can be differentiated infinitely
often form a subspace and the polynomials are a subspace of it.

Exercises 2.1. Which of the following are subspaces? Justify your answers.

(a) The set of real-valued functions f such that f(17) = 0.

(b) The set of real-valued functions f such that f(0) = 17.

(c) The set of all linear combinations of the vectors v1,v2,v3.

A linear operator or linear transformation is just a function L between
vector spaces, that is, the inputs and outputs are vectors, which satisfies
linearity, which is also called the superposition property :

L(v + w) = L(v) + L(w) and L(av) = aL(v). (2.6)

It follows that L relates linear combinations:

L(C1v1 + C2v2 + C3v3) = C1L(v1) + C2L(v2) + C3L(v3). (2.7)

This property of linearity is very special. It is a standard algebra mistake
to apply it to functions like the square root function and sin and cos etc. for
which it does not hold. On the other hand, these should be familiar properties
from calculus. The operator D associating to a differentiable function f its
derivative Df is our most important example of a linear operator.

From a linear operator we get an important example of a subspace. The
set of vectors v such that L(v) = 0, the solution space of the homogeneous
equation, is a subspace when L is a linear operator but usually not otherwise.
If r is not 0 then the solution space of L(v) = r is not a subspace. But if
any particular solution vp has been found, so that L(vp) = r, then all of the
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solutions are of the form vp +w where w is a solution of the homogeneous
equation. This is often written vg = vp + vh. That is, the general
solution is the sum of a particular solution and the general solution of the
homogeneous equation.

A subspace is called invariant for a linear operator L mapping the vector
space to itself when L maps the subspace into itself. The most important
example occurs when the subspace consists of multiples of a single nonzero
vector v. This subspace is invariant when L(v) = rv for some scalar r. In
that case, v is called an eigenvector for L with eigenvalue r.

Exercises 2.2. (a) Show that the set of linear combinations C1 cos+C2 sin
is an invariant subspace for D.

(b) Show that the set of polynomials of degree at most 3 is a subspace and
that it is invariant for D.

(c) Given a real number r compute an eigenvector for D with eigenvalue
r.

3 Matrices

An m × n matrix is a rectangular array of numbers with m rows and n
columns. That is, it is just a list of m · n numbers but listed in rectangular
form instead of all in a line. However, this shape is irrelevant as far as vector
addition and scalar multiplication are concerned. The zero m × n matrix 0
has a zero in each place. A matrix is called a square matrix if m = n.

However, there is a multiplication between matrices which seems a bit
odd until you get used to it by seeing its applications. If A is an m × p
matrix and B is a p×q matrix then the product C = AB is defined and is an
m× q matrix. Think of A as cut up into m rows, each of length p, and B as
cut up into q columns, each of length p. C is constructed using the following
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pattern (in this picture A is 3× 4, and B is 4× 2 so that C is 3× 2).
| |
| |
| |
| |

 = B

A =

− − − −
− − − −
− − − −

· ·
· ·
· ·

 = C.

(3.1)

In particular, the product of two n × n matrices is defined and yields an
n × n matrix. The associative law (AB)C = A(BC) and the distributive
laws A(B+C) = AB+AC and (A+B)C = AC +BC both hold and so we
use them rather automatically. However, the commutative law AB = BC is
not true except in certain special cases and so you have to be careful about
the side on which you multiply.

In this course we will be dealing with 2× 2 matrices and their 1× 2 row
vectors and 2× 1 column vectors.

The 2×2 identity matrix is I =

(
1 0
0 1

)
. That is, it has 1’s on the diagonal

and zeroes off the diagonal. For any 2× 2 matrix A, we have IA = A = AI.
That is, I behaves like the number 1 with respect to matrix multiplication.
In general, (rI)A = rA = A(rI) for any scalar r.

The inverse of a 2× 2 matrix A, denoted A−1 when it exists, is a matrix
which cancels A by multiplication. That is A−1A = I = AA−1.

The determinant of a matrix A =

(
a b
c d

)
is ad − bc and is denoted

det(A). For example, det(I) = 1. It turns out that det(AB) = det(A)det(B).
This property implies that if A has an inverse matrix then det(A)det(A−1) =
det(I) = 1. So det(A) is not zero. In fact, its reciprocal is det(A−1).

For a 2 × 2 matrix A =

(
a b
c d

)
define Â =

(
d −b
−c a

)
. That is, you

interchange the diagonal elements and leave the other two elements in place
but with the sign reversed. You should memorize this pattern as it is the
reason that 2× 2 matrices are much easier to deal with than larger ones. We
will repeatedly use the following important identity:

A · Â = det(A)I = ÂA. (3.2)

7



Thus, if det(A) is not zero, then A has an inverse and its inverse is

A−1 =
1

det(A)
· Â. (3.3)

If det(A) = 0 then A does not have an inverse and AÂ = 0 = ÂA.

The trace of a matrix A =

(
a b
c d

)
is a+ d and is denoted tr(A).

The transpose of a matrix A =

(
a b
c d

)
is A′ =

(
a c
b d

)
obtained be

reversing the rows and columns. In the 2 × 2 case we just interchange the
off-diagonal elements. Check that det(A′) = det(A) and that

A′A =

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
. (3.4)

Taking the transpose reverses the order of multiplication in a product. That
is, (AB)′ = B′A′.

Using a 2× 2 matrix A we can define two linear mappings on R2. Define
RA(X) = AX with X a 2× 1 column vector. Define LA(Z) = ZA with Z a
1× 2 row vector.

The system of two linear equations in two unknowns

ax + by = r,

cx + dy = s.
(3.5)

Can be written as a matrix equation LA(X) = AX = S with A =

(
a b
c d

)
the coefficient matrix, and with column vectors X =

(
x
y

)
and S =

(
r
s

)
.

When the determinant is not zero then the unique solution is X = A−1S.

Exercises 3.1. By using the formula for the inverse, derive Cramer’s Rule

x =
1

det(A)
det

(
r b
s d

)
, y =

1

det(A)
det

(
a r
c s

)
(3.6)

If det(A) = 0 and S = 0, then the homogeneous system AX = 0 has
infinitely many solutions. X = 0 is always a solution for the homogeneous
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system, but (3.2) implies that AÂ = 0. This means that the columns of Â,

X =

(
d
−c

)
and X =

(
−b
a

)
are solutions as well. At least one of these is

not zero, unless A itself is 0 and in that case every vector X is a solution.

4 Linear Independence and the Wronskian

A list of vectors {v1, ....,vk} is called linearly dependent if one of them can
be written as a linear combination of the others. For example, consider the
functions {cos2(x), sin2(x), cos(2x)}. Since cos(2x) = cos2(x) − sin2(x) it
follows that this list of three functions is linearly dependent. When a list is
not linearly dependent we call it linearly independent.

For our applications we will be looking just at pairs of vectors, lists with
k = 2. In that case, {v1,v2} is linearly dependent when one is a multiple
of the other. This means v1 = Cv2 in which case, 1

C
v1 = v2 and each is

a multiple of the other. This is true except in the annoying case when one
of the vectors is 0. For any vector v, we have 0 = 0 · v and so {0,v} is a
linearly dependent list for any vector v.

Thus, a pair of vectors is linearly independent when the vectors are “really
different”.

For two differentiable, real-valued functions u and v defined for x in some
interval of R, we define the Wronskian W (u, v) to be a new real valued
function given by:

W (u, v) = det

(
u v
u′ v′

)
= uv′ − vu′. (4.1)

If v = Cu then the Wronskian is zero everywhere. The converse is almost
true. Suppose the Wronskian is identically zero. We divide by u2 to get

0 =
W

u2
=

uv′ − vu′

u2
= (

v

u
)′ (4.2)

by the Quotient Rule. But since the derivative is identically zero, the fraction
v
u
is a constant and so v = Cu. Before looking at the next lines, consider

this: We divided by u2. When might that be a problem?
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Now look at u(x) = x3 and v(x) = |x3|. When x is positive, u(x) = v(x)
and when x is negative u(x) = −v(x). The Wronskian is identically zero,
but the pair {u, v} is linearly independent.

The problem was division by u2 at a point x where u(x) = 0. On any
interval where neither u nor v is zero, the ratio is indeed a constant and the
pair is linearly dependent.

For our applications we will consider two vectors (a, b) and (c, d) in R2

which we put together as the two rows of the 2 × 2 matrix A. All of the
following conditions are equivalent.

• The pair {(a, b), (c, d)} is linearly dependent.

• The determinant det(A) equals zero.

• The linear system WA = 0 has a solution W = (w1 w2) which is not
zero.

First, put aside the case where A = 0 and so both vectors are 0. In that
case the determinant is zero, the vectors are linearly dependent and any 1×2
matrix W solves the system. Now we assume that A is not the zero matrix.

If (a, b) = C(c, d) then det(A) = Ccd− Cdc = 0 and W = (1 − C) is a
nonzero solution of the system.

If W = (w1w2) is a solution of the system then w1(a, b) = −w2(c, d) and
so if w1 ̸= 0 we can divide to write (a, b) as a constant times (c, d) and
similarly if w2 ̸= 0. So if there is a nonzero solution Z then the vectors are
linearly dependent and so the determinant is zero.

If det(A) = 0 then by (3.2) ÂA = 0 and soW = (d −b) andW = (−c a),

the two rows of Â are solutions of WA = 0. Since A is not the zero matrix,
at least one of these is not the zero vector.

Take careful note of this trick of using the rows of Â to solve the system
WA = 0. We will later use it to avoid methods like Gaussian Elimination
which are needed to solve such systems when there are more variables.
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5 Complex Numbers

We represent the complex number z = a + ib as a vector in R2 with x-
coordinate a and y-coordinate b. Addition and multiplication by real scalars
is done just as with vectors. For multiplication (a + ib)(c + id) = (ac −
bd) + i(ad + bc). The conjugate z̄ = a − bi and zz̄ = a2 + b2 = |z|2 which is
positive unless z = 0. So to perform division with a nonzero denominator we
rationalize: w

z
= wz̄

zz̄
. You should check that zw = z̄ · w̄ and z + w = z̄+ w̄

for complex numbers z = a+ ib and w = c+ id.
Multiplication is also dealt with by using the polar form of the complex

number. This requires a bit of review.
Recall from Math 203 the three important Maclaurin series:

et = 1 + t+
t2

2
+

t3

3!
+

t4

4!
+

t5

5!
+

t6

6!
+

t7

7!
+ ...

cos(t) = 1 − t2

2
+

t4

4!
− t6

6!
+ ...

sin(t) = t − t3

3!
+

t5

5!
− t7

7!
+ ...

(5.1)

The exponential function is the first important example of a function f
on R which is neither even with f(−t) = f(t) nor odd with f(−t) = −f(t)
nor a mixture of even and odd functions in an obvious way like a polynomial.
It turns out that any function f on R can be written as the sum of an even
and an odd function by writing

f(t) =
f(t) + f(−t)

2
+

f(t)− f(−t)

2
. (5.2)

You have already seen this for f(t) = et

e−t = 1− t+
t2

2
− t3

3!
+

t4

4!
− t5

5!
+

t6

6!
− t7

7!
+ ...

cosh(t) =
et + e−t

2
= 1 +

t2

2
+

t4

4!
+

t6

6!
+ ...

sinh(t) =
et − e−t

2
= t +

t3

3!
+

t5

5!
+

t7

7!
+ ...

(5.3)
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Now we use the same trick but with eit

eit = 1 + it− t2

2
− i

t3

3!
+

t4

4!
+ i

t5

5!
− t6

6!
− i

t7

7!
+ ...

e−it = 1− it− t2

2
+ i

t3

3!
+

t4

4!
− i

t5

5!
− t6

6!
+ i

t7

7!
+ ...

eit + e−it

2
= 1 − t2

2
+

t4

4!
− t6

6!
+ ...

eit − e−it

2
= i[t − t3

3!
+

t5

5!
− t7

7!
+ ...]

(5.4)

So the even part of eit is cos(t) and the odd part is i sin(t). Adding them
we obtain Euler′sIdentity and its conjugate version.

eit = cos(t) + i sin(t)

e−it = cos(t) − i sin(t)
(5.5)

Substituting t = π we obtain eiπ = −1 and so eiπ + 1 = 0.
Now we start with a complex number z in rectangular form z = x + iy

and convert to polar coordinates with x = r cos(θ), y = r sin(θ) so that
r2 = x2 + y2 = zz̄. The length r is called the magnitude of z. The angle θ is
called the argument of z. We obtain

z = x + iy = r(cos(θ) + i sin(θ)) = reiθ. (5.6)

If z = reiθ and w = aeiϕ then, by using properties of the exponential, we
see that zw = raei(θ+ϕ). That is, the magnitudes multiply and the arguments
add. In particular, for a whole number n we have that zn = rneinθ.

DeMoivre’s Theorem describes the solutions of the equation zn = a which
has n distinct solutions when a is nonzero. We describe these solutions when
a is a nonzero real number.

Notice that reiθ = rei(θ+2π). When we raise this equation to the power n
the angles are replaced by nθ and nθ + n2π and so they differ by a multiple
of π. But when we divide by n we get different angles. So if a > 0, then
a = ei0 and −a = eiπ.

zn = a : z = a1/n · {ei0, ei2π/n, ei4π/n, ...., ei(n−1)2π/n}
zn = −a : z = a1/n · {eiπ/n, ei(π+2π)/n, ei(π+4π)/n, ...., ei(π+(n−1)2π)/n}

(5.7)

12



Another way of handling complex numbers is to associate to the complex

number z = x + iy the 2 × 2 real matrix A(z) =

(
x −y
y x

)
. If ξ = ρ + iω

so that A(ξ) =

(
ρ −ω
ω ρ

)
and ξz = u+ iv, we have that

A(ξz) = A(ξ)A(z) and

(
u
v

)
=

(
ρ −ω
ω ρ

)(
x
y

)
. (5.8)

Exercises 5.1. Verify the two equations of (5.8).

6 Linear Systems of Differential Equations -

Special Cases

Just as a system of linear equations can be written as a single matrix equation
AX = S with A an n×n matrix and with X and S n× 1 column vectors, so
we can write a system of n linear differential equations as dX

dt
= AX. This

looks just like exponential growth and so the solution should be X = etAX0

with X0 the n× 1 vector describing the initial position. That is, X(0) = X0.
Notice that etA will be an n×n matrix and so we have to multiply the n× 1
matrix X0 on the right.

The question is: what does that exponential mean? The first thought
would be to apply the exponential function to every entry of the matrix tA,
but that doesn’t work. Instead, you define it by analogy with the expansion
of et given by (5.1):

etA = I + tA+
t2

2
A2 +

t3

3!
A3 +

t4

4!
A4 +

t5

5!
A5 + ... (6.1)

Here I is the n×n identity matrix with 1’s on the diagonal and 0’s otherwise,
just as in the 2×2 case. The powers A,A2, ... are just obtained by repeatedly
multiplying A times itself. Even in the 2× 2, which is all we will deal with,
computing A5 for example, just from the definition is pretty nasty job. So
some tricks are needed to make use of this general solution. In this section
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we will compute some special cases and in the next we will introduce the
tricks which handle the general 2× 2 case.

Before we leave the general case, we look at two ideas which describe how
we will proceed.

The first idea is to change coordinates in a way that makes the problem
easier.

Think back to inclined plane problems in your first physics course. While
our vectors are naturally given in terms of horizontal and vertical coordinates,
the first thing you do in the plane problems is write all of the vectors in terms
of a component perpendicular to the plane and a component parallel to the
plane.

Here a linear change of coordinates replaces X by Y = QX where Q is
a constant matrix which has an inverse so that we can recover X = Q−1Y .
Because Q is a constant and the derivative is a linear operator we have

dY

dt
=

dQX

dt
= Q

dX

dt
= QAX = QAQ−1QX = QAQ−1Y. (6.2)

In the Y system the coefficient matrix A has been replaced by the similar
matrix QAQ−1. The trick will be to choose Q so that QAQ−1 has a simple
form.

The other idea is to notice that Z(t) = etA is a path in the space of n×n
matrices with Z(0) = I. That is, it is the unique solution of the initial value
problem in the space of matrices:

dZ

dt
= AZ with Z(0) = I. (6.3)

This is called the fundamental solution for the system. Then if we want
the solution of the initial value problem in Rn given by dX

dt
= AX with

X(0) = X0 we just use X(t) = Z(t)X0. Notice that if Q is an invertible
matrix that we want to use to change coordinates then

dQZQ−1

dt
= (QAQ−1)(QZQ−1) with QZQ−1(0) = QIQ−1 = I.

(6.4)
That is, the fundamental solution for the system with A replaced by the
similar matrix QAQ−1 is obtained by replacing Z(t) by the same similarity
transformation at each time t.

In the next section we will explain the labels used for the three cases we
now consider. As you might anticipate from our previous work with second
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order, linear, homogeneous equations with constant coefficients, the labels
refer to the roots of an appropriate characteristic equation.

Case 1: Two Real Roots r1, r2 : The special system here is{
dx
dt

= r1x,
dy
dt

= r2y.
A =

(
r1 0
0 r2

)
(6.5)

In this case, the two variables x and y are said to be uncoupled. We solve the
x and y equations separately to get x = x0e

r1t, y = y0e
r2t. The fundamental

solution is given by

Z(t) =

(
er1t 0
0 er2t

)
. (6.6)

Case 2: Repeated Real Root r : The special system this time is{
dx
dt

= rx,
dy
dt

= x + ry.
A =

(
r 0
1 r

)
. (6.7)

Here we can solve the x equation to get x = x0e
rt and we can substitute this

into the y equation to get dy
dt

= x0e
rt + ry. This is a simple example of the

first order linear equations studied in Section 2.1 of B & D with integrating
factor e−rt and solution y = tx0e

rt + y0e
rt. The fundamental solution is

Z(t) =

(
ert 0
tert ert

)
= ert

(
1 0
t 1

)
. (6.8)

Case 3: Complex Conjugate Roots ρ± iω : In this case the special
system is {

dx
dt

= ρx − ωy,
dy
dt

= ωx + ρy.
A =

(
ρ −ω
ω ρ

)
. (6.9)

We switch to complex coordinates. Let z = x+ iy and ξ = ρ+ iω. By using
the second equation of (5.8) we see that the system becomes dz

dt
= ξz. Using
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the complex exponential we get the solution z = eξtz0 where z0 = x0 + iy0.
Remember that

eξt = eρt+iωt = eρteiωt = eρt[cos(ωt) + i sin(ωt)]. (6.10)

Now we use (5.8) again to go back from complex numbers to vectors in R2.
Multiplying the complex number x0+iy0 by the complex number eρt[cos(ωt)+

i sin(ωt)] becomes multiplication of the 2 × 1 column vector

(
x0

y0

)
by the

fundamental matrix

Z(t) = eρt
(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
. (6.11)

In this case, it is useful to consider the system in polar coordinates. In
complex language z = reiθ with r2 = zz̄. Now we start with dz

dt
= ξz from

which we get dz̄
dt

= ξ̄z̄. (Remember that ξz = ξ̄z̄). So we get, by the Product
Rule,

2r
dr

dt
=

dr2

dt
=

dzz̄

dt

=
dz

dt
z̄ + z

dz̄

dt
= (ξ + ξ̄)zz̄ = 2ρr2.

(6.12)

and so dr
dt

= ρr.
Next, we have, by the Product Rule again and the Chain Rule,

(ρ+ iω)reiθ = ξz =
dz

dt
=

dreiθ

dt

=
dr

dt
eiθ + ireiθ

dθ

dt
= (ρ+ i

dθ

dt
)reiθ.

(6.13)

This implies dθ
dt

= ω.
So we obtain the system in polar coordinates:

dr

dt
= ρ r and

dθ

dt
= ω. (6.14)

We conclude by noting that the second order, linear, homogeneous equa-
tion with constant coefficients Ad2x

dt2
+ B dx

dt
+ Cx = 0 can be rewritten in
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the form of a 2× 2 system. Let v = dx
dt

to get the system{
dx
dt

= v,
dv
dt

= (−C/A)x + (−B/A)v.
A =

(
0 1

(−C/A) (−B/A)

)
.

(6.15)

7 Eigenvalues and Eigenvectors

A (left) eigenvector with eigenvalue r for a 2× 2 matrix A is a nonzero 1× 2
row vector W such that WA = rW . If we have an eigenvector then we get
the eigenvalue by seeing what multiple of W is WA. However, in practise we
find the eigenvalue first and then compute its eigenvector. Notice that we
speak of the eigenvector although we shouldn’t because any nonzero multiple
of W is an eigenvector with the same eigenvalue.

The vector W is an eigenvector with eigenvalue r exactly when it is a
nonzero solution of W (A−rI) = 0. We saw in Section 4 that such a nonzero
solution can be found only when the determinant det(A − rI) = 0 in which

case we can use Â− rI to solve the system. So we first find out for which
real or complex numbers r the determinant det(A− rI) is zero and then for
each compute an eigenvector. When we expand this determinant we get a

quadratic equation in the unknown r. With A =

(
a b
c d

)
we have

det(A− rI) = det(

(
a− r b
c d− r

)
= r2 − tr(A)r + det(A). (7.1)

where the trace tr(A) = a + d and the determinant det(A) = ad − bc. The
associated quadratic equation r2 − tr(A)r + det(A) = 0 is called the char-
acteristic equation of the matrix A. We get the roots r+ and r− by applying
the Quadratic Formula.

r± =
1

2
[ tr(A) ±

√
tr(A)2 − 4det(A) ], and so

r+ + r− = tr(A) and r+ · r− = det(A).
(7.2)
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The expression inside the square root is the discriminant, disc(A), which will
account for our different cases.

disc(A) = tr(A)2 − 4det(A) = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc.
(7.3)

Case 1: disc(A) > 0, 4det(A) < tr(A)2, Two Real Roots r+, r− .

We know that det(A − r+I) = 0 and so the rows (d − r+ − b) and

(−c a − r+) of Â− r+I are solutions of W (A − r+I) = 0. Notice that
disc(A) ̸= 0 implies that if either b or c equals 0 then a ̸= d. So at least
one of these rows is nonzero (usually both). Choose a nonzero one as the
eigenvector W+ with eigenvalue r+. The two rows are linearly dependent and
so up to nonzero multiple we get only one eigenvector whichever choice we
use.

For r− we do the same thing use either (d − r− − b) or (−c a − r−),
whichever is nonzero, as a choice for the eigenvector W− with eigenvector r−.

Exercises 7.1. Using the facts that r+ ̸= r− and that neither W+ nor W− is
the zero vector, show that the pair {W+,W−} is linearly independent. (Hint:
Assume W− = CW+, multiply by A and derive a contradiction.)

Define Q as the 2 × 2 matrix with rows W+ and W−. Because these are
linearly independent, det(Q) is not zero and so Q has an inverse Q−1. From
the definitions of these vectors we have

QA =

(
r+ 0
0 r−

)
Q and so QAQ−1 =

(
r+ 0
0 r−

)
(7.4)

Case 2: disc(A) = 0, 4det(A) = tr(A)2, One Real Root, r, Re-
peated.

Since the discriminant (d− a)2 − 4bc = 0 we see that

a = d ⇐⇒ b = 0 or c = 0. (7.5)
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Also, the root r is 1
2
tr(A) = 1

2
(a+ d) and so

A− rI =

(
(a− d)/2 b

c (d− a)/2

)
. (7.6)

If A− rI is the zero matrix then A = rI =

(
r 0
0 r

)
. That is, A is already

in the special form we want and so we make no change. Or you can think
that we use Q = I.

From now on assume that A−rI is not zero. So we use as our eigenvector

W whichever of the two rows of Â− rI are nonzero. That is, we use either
W (1) = ((d − a)/2 − b) or W (2) = (−c (a − d)/2). Whatever the choice
we get only one eigenvector (up to nonzero multiple) and we cannot build
Q using eigenvectors alone. Instead we use a different sort of vector. Let
U (1) = (−1 0) and U (2) = (0 − 1). Observe that

U (1)(A− rI) = W (1) and U (2)(A− rI) = W (2), and so

U (1)A = W (1) + rU (1) and U (2)A = W (2) + rU (2).
(7.7)

Let Q be the 2×2 matrix with rows W (1) and U (1) which has determinant
−b. If b = 0 and so W (1) = 0 we use the rows W (2) and U (2) to obtain Q
with determinant c. From the definitions of these vectors we have

QA =

(
r 0
1 r

)
Q and so QAQ−1 =

(
r 0
1 r

)
(7.8)

Case 3: disc(A) < 0, 4det(A) > tr(A)2, Complex Conjugate Pair
ρ± iω .

Since disc(A) = (a− d)2 + 4bc < 0, 4bc < −(d− a)2 and so neither b nor
c is zero. By (7.2) tr(A) = 2ρ and det(A) = ρ2 + ω2. The real part ρ might
be zero but ω = 1

2

√
|disc(A)| ̸= 0.

With ξ = ρ + iω the complex matrix A − ξI has determinant zero

and so the first row of Â− ξI, Z = (d− ξ − b) is an eigenvector of A with
eigenvalue ξ. That is, with Z = (z1 z2) we have ZA = ξZ. Since conjugation
commutes with multiplication and addition we have Z̄A = ξ̄Z̄. That is, Z̄ is
an eigenvector with eigenvalue ξ̄. Here z1 = d− ρ − iω, z2 = −b. So if we
let

Q =

(
x1 x2

y1 y2

)
=

(
d− ρ −b
−ω 0

)
(7.9)
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then Q has determinant −bω which is not zero. Thus, the two columns of Q
are the 2× 1 matrices associated with the complex numbers z1 and z2.

We check that in this case

QA =

(
ρ −ω
ω ρ

)
Q and so QAQ−1 =

(
ρ −ω
ω ρ

)
. (7.10)

First notice that since A is real (no imaginary part), the real and imagi-
nary parts of ZA are given by (x1 x2)A and (y1 y2)A, respectively and so
they are the two rows of ZA.

Next, recall from (5.8) that the real and imaginary parts of ξz1 are given

by

(
ρ −ω
ω ρ

)(
x1

y1

)
and similarly for ξz2. So we see that the real and imag-

inary parts of ξ(z1 z2) are the first and second rows of

(
ρ −ω
ω ρ

)
Q.

This verifies the first equation of (7.10) and the second follows, as usual,
by multiplying by Q−1 on the right.

Thus, in each of these cases we have found the invertible matrix Q which
converts the matrix A to the associated special form considered in the pre-
vious section.

Exercises 7.2. Check that each special form has the expected eigenvalues.
That is,

A =

(
r1 0
0 r2

)
has eigenvalues r1, r2.

A =

(
r 0
1 r

)
has eigenvalue r and disc(A) = 0,

A =

(
ρ −ω
ω ρ

)
has eigenvalues ρ± iω.

(7.11)
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8 Bifurcations

The behavior of the linear differential equation dx
dt

= rx depends only on the
sign of r. This is exponential growth when r > 0 and exponential decay
when r < 0. The equilibrium at 0 is a attractor when r < 0 and is a repellor
when r > 0.

Exercises 8.1. Show that if r1 and r2 are either both positive or both neg-
ative then on the positive real numbers the change of variables y = xr2/r1

converts the equation dx
dt

= r1x to dy
dt

= r2y.

Think of the parameter r as changing, but very slowly compared to the
time-scale of the equation. All the while that r remains negative the particle
moving according to the equation moves rapidly toward 0. Suddenly, when
r = 0 the entire universe changes at once. Everything stops. As long as
r = 0 every point is an equilibrium. Then once r is positive 0 becomes a
repellor and every point everywhere moves away from zero.

The parameter value r = 0 is called a bifurcation value separating two
regimes of very different behavior.

Now look at the nonlinear case, with dx
dt

= rx − x3. Using the graphical
methods of Section 1, you can see that as long as r < 0 there is a unique
equilibrium at x = 0 and every point moves in toward 0. This time even when
r = 0 the equilibrium at 0 is a global attractor. Again r = 0 is a bifurcation
value but now the behavior changes to something more interesting.

Exercises 8.2. Show that if r > 0 then dx
dt

= rx − x3 has a repelling equi-
librium at x = 0 and attracting equilibria at x = ±

√
r.

The behavior near x = 0 is like that of the linear system dx
dt

= rx when
r is not zero, but the points near infinity still move in toward 0 as they did
before. Separating this old attracting regime and the new repelling regime
are the new equilibria.

Things can become even more interesting for systems of equations.

Exercises 8.3. With ξ = ρ + iω, show that the complex equation dz
dt

=
ξz − r2z (with r2 = zz̄) can be written in rectangular coordinates, and in
polar coordinates as{

dx
dt

= ρx− ωy − x(x2 + y2),
dy
dt

= ωx+ ρy − y(x2 + y2).
and

{
dr
dt

= ρr − r3,
dθ
dt

= ω.
(8.1)
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By looking at the system in polar coordinates, we see again that the origin
(0, 0) is a globally attracting equilibrium for ρ ≤ 0. Again when ρ becomes
positive, the equilibrium becomes a repellor with nearby behavior like that
of the linear system. Again the points at infinity still move in toward the
origin. But now the orbits all spiral with with angular velocity ω. r =

√
ρ

at which dr
dt

= 0 is not an equilibrium, but instead an attracting circle. This
appearance of a limit cycle was due to the bifurcation in which there was a
sign change in the real part ρ of a complex conjugate pair of eigenvalues. It
is an example of a Hopf bifurcation.

Syllabus and Homework

In the syllabus below we write BD for the Boyce and DiPrima Book and
EA for these notes. The BD homework assignments refer to the 10th Edition
[with the same problems in the 9th Edition given in brackets].

1. Introduction to First Order Equations: EA Section 1 and BD Section
2.2, Separable and Homogeneous equations, HW: EA ex 1.1, BD p. 48/
3-17odd [pp. 47-48/ 3-17odd] and pp. 50-51/ 31-37odd [p. 50/ 31-37odd].

2. Vectors and Linear Equations: EA Section 2 and BD Section 2.1,
Linear Equations. HW: EA ex 2.1, 2.2 BD p. 40/ 7-10, 11-15odd [p. 39/
7-10, 11-15odd].

3. Potentials and Exact Equations: BD Section 2.6, HW: BD p.
101/ 1, 3, 4, 7-13odd, 17, 18 [pp. 99-100/ 1, 3, 4, 7-13odd, 17, 18 differential
notation].

4. Existence and Uniqueness, Linear vs Nonlinear Equations: BD Section
2.4, HW: Miscellaneous pp. 133-134/ 1-14, 28, 29 [pp. 132-133/ 1-14, 28,
29].

5. Modeling: BD Section 2.3, HW: BD pp. 60-63/ 1-4, 7-10, 16 [pp.
59-62/ 1-4, 7-10, 16].

6. Reduction of Order Problems: HW: BD pp. 135-136/ 36, 37, 41,
42, 43, 45, 48, 49 [pp. 134-135/ 36, 37, 41, 42, 43, 45, 48, 49].

7. Introduction to Second Order Linear Equations and Matrices: EA
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Section 3 (see also BD Section 7.2), BD Section 3.1, HW: EA ex 3.1, BD
p. 144/ 1-11odd, 16 [p. 144/ 1-11odd, 16], and pp. 376-377/2, 10, 11 [pp.
371-372/2, 10, 11].

8. Linear Independence, Fundamental Solutions and the Wronskian: EA
Section 4, BD Section 3.2 HW: BD pp. 155-157/ 1, 3, 5, 14, 16, 38, 39
[pp. 155-156/ 1, 3, 5, 14, 16, 38, 39].

9. Complex Roots: EA Section 5, BD Section 3.3, HW: EA ex. 5.1,
BD p. 164/ 1-11odd, 17, 19 [p. 163/ 1-11odd, 17, 19].

10. Repeated Roots; Reduction of Order: BD Section 3.4, HW: BD
pp. 172-174/ 1-11odd; 23, 25, 28 [pp. 171-173/ 1-11odd; 23, 25, 28].

11. Euler Equations: BD Section 3.3, p. 166, Section 3.4, p.175 , HW:
BD p. 166/ 35-41 odd, p. 175/41-45 odd [p. 165/ 35-41 odd, p. 174/41-45
odd].

12. Undetermined Coefficients: BD Section 3.5, HW: BD p. 184/
5-11odd, 12, 15, 17, and 21-25 (Y(t) alone) [p. 183/ 3-9odd, 10, 13, 15, and
19-23 (Y(t) alone)].

13. Variation of Parameters: BD Section 3.6, HW: BD p. 190/ 3, 5,
7, 9, 10, 13, 14 [p. 189/ 3, 5, 7, 9, 10, 13, 14].

14. Higher Order Linear Equations with Constant Coefficients: BD Sec-
tions 4.2, 4.3 p. 234/ 11-23odd [p. 232/ 11-23odd] and p. 239/ 13-18 (Y(t)
alone) [p. 237/ 13-18 (Y(t) alone)].

15. Spring Problems: BD Sections 3.7, 3.8, HW: BD pp. 203-204/ 5,
6, 7, 9 p. 217/ 5, 6, 9 [p. 202/ 5, 6, 7, 9 p. 215/ 5, 6, 9].

16. Series Solutions: BD Section 5.2, HW: BD pp. 263-264/1, 2, 5-17
odd [pp. 259-260/1, 2, 5-17 odd].

17. Introduction to Linear Systems with Constant Coefficients: EA Sec-
tion 6, BD Sections 7.5.

18. Eigenvalues and Eigenvectors, Fundamental Matrix Solutions: EA
Section 7, BD Section 7.7, HW: EA ex. 7.1, 7.2 BD pp. 427-428/1-8,
11, 12, p. 436/1 [pp. 420-421/1-8, 11, 12, p. 428/1].

19. The Phase Plane: BD Sections 9.1, 9.3, HW: BD p. 505/1-5 [pp.
494-495/1-5].
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20. Bifurcations: EA Section 8, HW: ex. 8.1, 8.2, 8.3.

21. Fourier Series: BD Section 10.2, HW: BD p. 605/ 13-18 [p. 593/
13-18].

22. Even and Odd Functions: BD Section 10.4, HW: BD p. 620/ 15-19
[p. 608/ 15-19]

23. The Heat Equation: BD Section 10.5 HW: BD pp. 630-631/ 1-12
[pp. 618-619/ 1-12].

9 Class Information Notes

MATH 39104KL (65424) Differential Equations

Spring, 2015 Tuesday, Thursday 8:00-9:40 am NAC 5/101

Book and Notes: Elementary Differential Equations and Boundary
Value Problems , 10th Edition, by William E. Boyce and Richard C. DiPrima
[The 9th Edition is fine, but make sure you get the one that has ”Boundary
Value Problems” in the title.]

In addition, there will be the supplementary notes attached above, a pdf
of which will be posted on my home page.

Grading: There will be three in class tests [if time permits, otherwise,
just two] and a final exam. The final counts 40 % of the grade. You should be
warned that there are no makeups. Instead the remaining work will simply
be counted more heavily.

While I do not collect homework, it is important that you do the home-
work, preferably in advance of the class in which we will go over it.

Please attend regularly and be on time.

Office Hours: Tuesday 10:00-10:50 pm and Thursday 10:00-10:50 am.
Other times by appointment.

Ethan Akin Office: R6/287A
Phone: 650-5136 Email: ethanakin@earthlink.net
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