

Name: \qquad ID: \qquad

1. (5 points) Find a basis of the plane $x_{1}+2 x_{2}+x_{3}=0$ in \mathbb{R}^{3}.
2. \qquad
3. (5 points) Find all solutions to

$$
\left\{\begin{array}{l}
x_{1}+2 x_{3}+4 x_{4}=-8 \\
x_{2}-3 x_{3}-x_{4}=6 \\
3 x_{1}+4 x_{2}-6 x_{3}+8 x_{4}=0 \\
-x_{2}+3 x_{3}+4 x_{4}=-12
\end{array} .\right.
$$

2. \qquad
3. (5 points) (True/False) The rank of the matrix $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$ is two.
4. \qquad
5. (5 points) (True/False) There exists a 4×3 matrix A of rank 3 so that $A\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]=\overrightarrow{0}$.
6. \qquad
7. (5 points) Geometrically interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \vec{x}
$$

5. \qquad
6. (5 points) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis $\mathfrak{B}=$ $\left(\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$ when $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
7. \qquad
8. (5 points) Compute the matrix product $\left[\begin{array}{lll}0 & 0 & 10\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{c}0 \\ 10 \\ 0\end{array}\right]$
9. \qquad
10. (5 points) (True / False) Matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ is invertible.
11. \qquad
12. (5 points) Find a basis for the kernel of $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4\end{array}\right]$
13. \qquad
14. (5 points) Fit a linear function of the form $y=c_{0}+c_{1} t$ to the data points $(0,0),(1,1),(2,1)$ using least squares.
15. \qquad
16. (5 points) Evaluate $\operatorname{det}\left[\begin{array}{cccc}0 & 7 & 5 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 2\end{array}\right]$.
17. \qquad
18. (5 points) Find an orthonormal basis of the image of $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0\end{array}\right]$.
19. \qquad
20. (5 points) Find an eigenbasis of the following linear transformation of \mathbb{R}^{2} : projection onto the line L spanned by $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
21. \qquad
22. (5 points) Find an orthogonal matrix S so that $S^{T} A S$ is diagonal when $A=\left[\begin{array}{cc}3 & 3 \\ 3 & -5\end{array}\right]$.
23. \qquad
24. (5 points) Find the projection of $\vec{b}=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$ onto the image of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.
25.
26. (5 points) Find the singular values of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$.
27. \qquad
28. (5 points) Find the eigenvalues of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
29. \qquad
30. (5 points) (True/False) The matrix $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3\end{array}\right]$ is diagonalizable.
31. \qquad
32. (5 points) Find the coordinates of $\vec{x}=\left[\begin{array}{c}7 \\ 16\end{array}\right]$ with respect to the basis $\mathfrak{B}=\left(\vec{v}_{1}=\left[\begin{array}{c}2 \\ 5\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}5 \\ 12\end{array}\right]\right)$
33. \qquad
34. (5 points) Find the rank of the linear transformation $T(f)=f^{\prime}-3 f$ from P_{2} to P_{2}.
35. \qquad
