> Answer each question neatly on the line provided.

Name: \qquad ID: \qquad
Skip one of the following 16 questions.

1. (5 points) Find a basis \mathfrak{B} of \mathbb{R}^{2} so that the \mathfrak{B}-matrix of the linear transformation $T(\vec{x})=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \vec{x}$ is $B=\left[\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right]$.
2. \qquad
3. (5 points) Find k so that the system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}=4 \\
3 x_{1}+k x_{2}+4 x_{3}=6 \\
x_{1}+2 x_{2}+k x_{3}=6
\end{array}\right.
$$

has a unique solution.
3. (5 points) Suppose a line L in \mathbb{R}^{2} contains the vector $\vec{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$. Find the matrix A of the linear transformation $T(\vec{x})=\operatorname{proj}_{L}(\vec{x})$.
3. \qquad
4. (5 points) Find the rank of the linear transformation $T(f)=f+2 f^{\prime}$ from P_{2} to P_{2}.
4. \qquad
5. (5 points) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis $\mathfrak{B}=$ $\left(\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$ when $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
5. \qquad
6. (5 points) Find all vectors \vec{x} in the kernel of $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
6. \qquad
7. (5 points) Find a basis for the image of $A=\left[\begin{array}{cccc}1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1\end{array}\right]$
7. \qquad
8. (5 points) Find the matrix of the linear transformation $T(M)=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right] M$ from the space of 2×2 upper triangular matrices $U^{2 \times 2}$ to $U^{2 \times 2}$ using the basis $\mathfrak{U}=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$ of $U^{2 \times 2}$.
8. \qquad
9. (5 points) Describe the kernel of A^{2} geometrically when $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
9. \qquad
10. (5 points) Find the $Q R$ factorization of $A=\left[\begin{array}{ll}1 & 6 \\ 1 & 4 \\ 1 & 6 \\ 1 & 4\end{array}\right]$.
10. \qquad
11. (5 points) Two interacting populations of h and f can be modeled by the recursive equations

$$
\left\{\begin{array}{l}
h(t+1)=6 h(t)+3 f(t) \\
f(t+1)=2 h(t)+7 f(t)
\end{array}\right.
$$

Find $f(10)$ if $h(0)=2, f(0)=2$.
11. \qquad
12. (5 points) Find a diagonal matrix B so that there is an invertibel matrix S so that $B=S^{-1} A S$ when $A=\left[\begin{array}{cc}.4 & .3 \\ .6 & .7\end{array}\right]$.
12. \qquad
13. (5 points) Find the orthogonal projection of $\vec{x}=\left[\begin{array}{c}10 \\ 0 \\ 0 \\ 0\end{array}\right]$ onto the the subspace of \mathbb{R}^{4} spanned by $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$.
13. \qquad
14. (5 points) Find an orthogonal matrix S such that $S^{T} A S$ is diagonal when $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 7\end{array}\right]$.
14. \qquad
15. (5 points) Find the matrix V in the singular value decomposition $A=U \Sigma V^{T}$ of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
15. \qquad
16. (5 points) Let V be the span of ($\vec{v}_{1}=\left[\begin{array}{l}0 \\ \frac{1}{3}\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-10 \\ 0\end{array}\right]$). Find the coordinates of $\vec{x}=\left[\begin{array}{c}20 \\ 3\end{array}\right]$ with respect to the basis $\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}\right)$.
16. \qquad

Skip ONE True / False

1. (2 points) The matrix $\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.
2. \qquad
3. (2 points) If an $n \times n$ has n distinct eigenvalues then it must be symmetric.
4. \qquad
5. (2 points) The quadratic form $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+\frac{1}{2} x_{1} x_{2}+x_{2}^{2}$ is positive definite.
6. \qquad
7. (2 points) If \vec{v} is in the kernel of an $n \times n$ matrix A then \vec{v} must be an eigenvector of A.
8. \qquad
9. (2 points) $b-A x^{*}$ is perpendicular to the kernel of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$ when x^{*} is the least squares solution of the system $A x=b$ for $b=\left[\begin{array}{l}0 \\ 0 \\ 6\end{array}\right]$.
10. \qquad
11. (2 points) If all the entries of a 4×4 matrix A are 4 then the $\operatorname{det} A$ must be 4^{4}.
12. \qquad
13. (2 points) Consider a 4×4 matrix A with rows $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$. If $\operatorname{det}(A)=8$ then $\operatorname{det}\left[\begin{array}{l}\vec{v}_{2} \\ \vec{v}_{3} \\ \vec{v}_{1} \\ \vec{v}_{4}\end{array}\right]=8$.
14. \qquad
15. (2 points) If \vec{u}, \vec{v}, and \vec{w} are nonzero vectors in \mathbb{R}^{2} then \vec{w} must be a linear combination of \vec{v} and \vec{u}.
16. \qquad
17. (2 points) If A is a 3×4 matrix of rank 3 , then the system $A \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ solutions.
18. \qquad
19. (2 points) Matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ is invertible.
20. \qquad
