Final Exam

Answer each question neatly on the line provided.

Name: _ ID: _____ Skip one of the following 16 questions. 1. (5 points) Find a basis \mathfrak{B} of \mathbb{R}^2 so that the \mathfrak{B} -matrix of the linear transformation $T(\vec{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \vec{x}$ is $B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}.$ 1. _____ 2. (5 points) Find k so that the system $\begin{cases} x_1 + 2x_2 + 3x_3 = 4\\ 3x_1 + kx_2 + 4x_3 = 6\\ x_1 + 2x_2 + kx_3 = 6 \end{cases}.$ has a unique solution. 2. _____ 3. (5 points) Suppose a line L in \mathbb{R}^2 contains the vector $\vec{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Find the matrix A of the linear transformation $T(\vec{x}) = \text{proj}_L(\vec{x}).$ 3. _____

4. (5 points) Find the rank of the linear transformation T(f) = f + 2f' from P_2 to P_2 .

5. (5 points) Find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1\\2 \end{bmatrix})$ when $A = \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix}$.

6. (5 points) Find all vectors \vec{x} in the kernel of $A = \begin{bmatrix} 1 & 2 & 0 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

7. (5 points) Find a basis for the image of
$$A = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix}$$

8. (5 points) Find the matrix of the linear transformation $T(M) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} M$ from the space of 2×2 upper triangular matrices $U^{2\times 2}$ to $U^{2\times 2}$ using the basis $\mathfrak{U} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix})$ of $U^{2\times 2}$.

			0	1	0]	
9.	(5 points)	Describe the kernel of A^2 geometrically when $A =$	0	0	1	
			0	0	0	

9. _____

8. _____

7._____

6. _____

10. (5 points) Find the QR factorization of $A = \begin{bmatrix} 1 & 6 \\ 1 & 4 \\ 1 & 6 \\ 1 & 4 \end{bmatrix}$.

10.	

11. (5 points) Two interacting populations of h and f can be modeled by the recursive equations

$$\begin{cases} h(t+1) = 6h(t) + 3f(t) \\ f(t+1) = 2h(t) + 7f(t) \end{cases}$$

Find f(10) if h(0) = 2, f(0) = 2.

11. _____

12. (5 points) Find a diagonal matrix B so that there is an invertibel matrix S so that $B = S^{-1}AS$ when $A = \begin{bmatrix} .4 & .3 \\ .6 & .7 \end{bmatrix}$.

12.	

13. (5 points) Find the orthogonal projection of $\vec{x} = \begin{bmatrix} 10\\0\\0\\0 \end{bmatrix}$ onto the subspace of \mathbb{R}^4 spanned by $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

and $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$.

14. (5 points) Find an orthogonal matrix S such that $S^T A S$ is diagonal when $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 7 \end{bmatrix}$.

15. (5 points) Find the matrix V in the singular value decomposition
$$A = U\Sigma V^T$$
 of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.

14. _____

16. (5 points) Let V be the span of
$$(\vec{v}_1 = \begin{bmatrix} 0 \\ \frac{1}{3} \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -10 \\ 0 \end{bmatrix})$$
. Find the coordinates of $\vec{x} = \begin{bmatrix} 20 \\ 3 \end{bmatrix}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2)$.

Skip ONE True / False

1. (2 points) The matrix
$$\begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is diagonalizable.

2. (2 points) If an $n \times n$ has n distinct eigenvalues then it must be symmetric.

2. _____

- 3. (2 points) The quadratic form $q(x_1, x_2) = x_1^2 + \frac{1}{2}x_1x_2 + x_2^2$ is positive definite.
- 4. (2 points) If \vec{v} is in the kernel of an $n \times n$ matrix A then \vec{v} must be an eigenvector of A.
- 5. (2 points) $b Ax^*$ is perpendicular to the kernel of the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$ when x^* is the least squares solution of the system Ax = b for $b = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$.
- 6. (2 points) If all the entries of a 4×4 matrix A are 4 then the det A must be 4^4 .
- 7. (2 points) Consider a 4×4 matrix A with rows $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$. If $\det(A) = 8$ then $\det \begin{bmatrix} \vec{v}_2 \\ \vec{v}_3 \\ \vec{v}_1 \end{bmatrix} = 8$.
- 8. (2 points) If \vec{u}, \vec{v} , and \vec{w} are nonzero vectors in \mathbb{R}^2 then \vec{w} must be a linear combination of \vec{v} and \vec{u} .
- 9. (2 points) If A is a 3 × 4 matrix of rank 3, then the system $A\vec{x} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ must have infinitely many solutions.

10. (2 points) Matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 is invertible.

3. _____

5. _____

7. _____

8. _____