Name: _

EMPLID: _____

- 1. State, for each series, whether it converges absolutely, converges conditionally, or diverges. Name a test which supports each conclusion and show the work to apply the test.
 - (a) (4 points) $\sum_{n=2}^{\infty} \frac{(-1)^n (n)}{3n^2 + 4}$

(b) (4 points) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$.

(b) _____

2. (4 points) Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x+1)^n}{(n+3)4^n}$. Remember to check endpoints, if applicable.

2. _____

(a) _____

3. (4 points) Graph $x^2 - y^2 + z^2 - 4x - 2z = 0$, labelling the coordinates of all vertices, if any.

4. Let f(x) = ∑_{n=0}[∞] (n+1)xⁿ/2ⁿ for each x for which the series converges.
(a) (4 points) Write a power series in summation notation for the indefinite integral of f.

(b) (4 points) Find the exact value of $\int_0^1 f(x) dx$.

5. (4 points) Find the area of the region that lies inside the curve r = 1 and outside $r = 1 - \cos \theta$.

- 6. (4 points) Decide whether the improper integral $\int_1^\infty \frac{\cos^2 x}{1+x^2} dx$ is convergent or divergent by comparing it to a known improper integral. (You must compare to a known improper integral in order to receive credit).
- 7. (4 points) Evaluate $\int_{1}^{e^2} \frac{\ln t}{\sqrt{t}} dt$.
- 8. (4 points) Evaluate $\int \tan^4 t \, dt$.
- 9. (4 points) Evaluate $\int_0^1 x e^{-2x} dx$.

- 8._____

9. _____

5. _____

6. _____

- v. _____

7. _____

(b) _____

(a) ______

10. (4 points) Evaluate $\int \frac{x^2}{\sqrt{9-x^2}} dx$.

- 11. (4 points) Evaluate $\int_{-1}^{1} \frac{6t+7}{(t+2)^2} dt$.
- 12. (4 points) Evaluate $\int_{-1}^{1} x^2 \sqrt{x^3 + 1} dt$.
- 13. (4 points) Use Trapezoid Rule with n = 4 to approximate $\int_1^2 8x^2 dx$. No credit will be given for any other method.
- 14. (4 points) A sample of radioactive material decays to one-third of its orginal mass after 8 days. Find the half-life of the material. Find the mass remaining after 20 days if the sample had mass of 2 mg initially.

14. _____

15. (4 points) Which of the sequences below converge, and which diverge? Find the limit(s) of the covergent ones, if any.

(a) $a_n = \frac{\sin^2 n}{n}$

(a) _____

(b) $a_n = \frac{3^n}{n^3}$

(b) _____

12._____

10._____

13. _____

11. _____

16. (4 points) Find the first four terms of the Maclaurin series of $\frac{\ln(1+x)}{1-x}$.

17. (4 points) How close is the approximation $\sin x \approx x$ when $|x| < 10^{-3}$. Justify your answer.

18. (4 points) (True/False) If f is continuous on $[0, \infty)$ and $\int_1^{\infty} f(x) dx$ is convergent, then $\int_0^{\infty} f(x) dx$ is convergent.

19. (4 points) (True/False) The Ratio Test can be used to determine whether $\sum_{n=1}^{\infty} \frac{10}{n^3}$ converges.

20. (4 points) (True/False) If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} |a_n|$ diverges.

21. (4 points) For what values of x does the series $\sum_{n=0}^{\infty} \frac{2^n (x+2)^n}{n!}$ converge?

21. _____

19. _____

20. _____

18. _____

17. _____

16. _____

Traces in x = k

22. (4 points) Sketch and identify a quadric surface that could have the following traces

23. (4 points) Sketch the surface in \mathbb{R}^3 represented by $x^2 + z^2 = 25, 0 \le y \le 2$.