Math 201	SAMPLE FINAL		No Electronics
Name:			EMPLID:
1. (5 points)	Find $\frac{dy}{dx}$ when $y = \sqrt{x^4 + 1}$. Simplify your answer.		
		1	
2. (5 points)	Find the derivative of $y = t \ln(2t)$. Simplify your answer.		
3 (5 points)	Find the derivative of $f(x) = \sin(2)$. Simplify your answ	2	
5. (5 points)	That the derivative of $f(x) = \sin(\frac{1}{x})$. Simplify your answ	/61.	

4. (5 points) Find the $\frac{dy}{dt}$ when $y = e^{2t} - \tan 2t$. Simplify your answer.

4. _____

3. _____

5. (5 points) Evaluate $\int x^3 \sqrt{2x^4 + 1} \, dx$

6. (5 points) Evaluate $\int \frac{x}{x^2+1} dx$

7. (5 points) Evaluate $\int_0^{\pi} 3\cos^2 t \sin t \, dt$

8. (5 points) Evaluate $\int_1^9 \frac{\sqrt{u}-2u^2}{u} du$

5. _____

6. _____

7._____

8. _____

9. (5 points) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $x^5 + x^2y^3 + y^2 = 10$.

10. Let $f(x) = 1 - x^2$.

(a) (5 points) Find f'(x) using definition of the derivative. No credit will be given for using any other method.

9. ____

(b) (5 points) Find an equation of the tangent line to the graph of f when x = 2.

11. (5 points) Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x. Make a rough sketch of the region.

11. _____

(b) _____

- 12. (5 points) Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$. Indicate all asymptotes, maximum, minimum, and inflection points, if any. HINT: $f'(x) = \frac{2(1-x^2)}{(1+x^2)^2}$, $f''(x) = \frac{4x(x^2-3)}{(1+x^2)^3}$.
- 13. (5 points) Sketch the graph of $y = 4x^3 x^4$. Indicate all asymptotes, maximum, minimum, and inflection points, if any.

14. (5 points) Find $\lim_{x\to 0} \frac{\sqrt{x^2+100}-10}{x^2}$

15. (5 points) Use linear approximation or differentials to estimate $\sqrt{4.01}$. No credit will be given for any other method.

15. _____

14. _____

16. (5 points) Evaluate $\lim_{x\to 0^-} \frac{3x}{|x|}$.

16. _____

17. (5 points) Find the absolute maximum and the absolute minimum values of $f(t) = 10x(2 - \ln x)$ on the interval $[1, e^2]$.

17. _____

18. (5 points) An open-top box is to be made by cutting small congruent squares from the corners of a 12 in. by 12 in. sheet of tin and bending up the sides. Find the largest volume inside of such a box.

18. _____

19. (5 points) Find $\frac{dy}{dx}$ when $y = \int_2^{x^3} \cos(t^2) dt$

20. (5 points) Use Riemann sums to approximate $\int_0^2 (4-x^2) dx$, with four subintervals, taking sample points to be left endpoints. Illustrate with a graph.

20. _____

19. _____

21. (5 points) The radius r of a circle is changing at the rate of $-\frac{2}{\pi}$ m/sec. At what rate is the circle's area changing when r = 10 m?

21._____