Draft Midterm 2

You have 1hr 15min. Answer each non-graph question neatly on the line provided.

Name: _

1. (10 points) Is the vector $\vec{x} = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$ is in the span of the vectors $\vec{v}_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$, $\vec{v}_2 \begin{bmatrix} 0\\1\\3\\0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0\\0\\4\\1 \end{bmatrix}$? If \vec{x} is in the span $\vec{v}_1, \vec{v}_{2,3}$, write the coordinates of \vec{x} with respect to the basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ on the answerline.

If \vec{x} is not in the span $\vec{v}_1, \vec{v}_{2,3}$ write FALSE on the answer line.

2. (a) (5 points) (TRUE/FALSE) The set W of all noninvertible 2×2 matrices is a subsapce of $\mathbb{R}^{2 \times 2}$.

(a) ______(b) (5 points) (TRUE/FALSE) The set V of all invertible 2×2 matrices is a subsapce of $\mathbb{R}^{2 \times 2}$.

- 3. (10 points) Find a basis of all polynomials f(t) in P_2 such that f(1) = 0.
- 4. (10 points) Find the image, rank, kernel, and nullity of the transformation $T(M) = M \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ from $\mathbb{R}^{2\times 2}$ to $\mathbb{R}^{2\times 2}$.
- 5. (10 points) Find the matrix of the linear transformation T(f) = f'' + 4f' from P_2 to P_2 with respect to the basis $\mathfrak{U} = (1, t, t^2)$ of P_2 .
- 6. Find the rank and nullity of the linear transformation T(f(t) = f''(t) + 4f(t) from P_2 to P_2 .

7. (10 points) Find the orthogonal projection of $9\vec{e_1}$ onto the subspace of \mathbb{R}^4 spanned by $\begin{bmatrix} 2\\2\\1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} -2\\2\\0\\1 \end{bmatrix}$.

8. (10 points) Perform the Gram-Schmidt process on the sequence of vectors $\vec{v}_1 = \begin{bmatrix} 4\\0\\3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 25\\0\\-25 \end{bmatrix}$.

(b) _____

1.

5. _____

9. (10 points) Determine the error $\|\vec{b} - A\vec{x}^*\|$ when \vec{x}^* is the least squares solution of the system $A\vec{x} = \vec{b}$ where $A = \begin{bmatrix} 6 & 9 \\ 3 & 8 \\ 2 & 10 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 0 \\ 49 \\ 0 \end{bmatrix}$.

10. (10 points) Find the determinant of $\begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}$

10. _____

9. _____

- 11. (a) (5 points) (TRUE/FALSE) The determinant of any diagonal $n \times n$ matrix is the product of the diagonal entries.
 - (b) (5 points) (TRUE/FALSE) det(A + B) = det(A) + det(B) for all 5×5 matrices A and B.

(b) _____

(a) _____