You have 1hr 15 min . Answer each non-graph question neatly on the line provided.
Name:

1. (10 points) Is the vector $\vec{x}=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right]$ is in the span of the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0\end{array}\right], \vec{v}_{2}\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 1\end{array}\right] ?$ If \vec{x} is in the span $\vec{v}_{1}, \vec{v}_{2}, 3$, write the coordinates of \vec{x} with respect to the basis $\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ on the answerline. If \vec{x} is not in the span $\vec{v}_{1}, \vec{v}_{2}, 3$ write FALSE on the answer line.
2. \qquad
3. (a) (5 points) (TRUE/FALSE) The set W of all noninvertible 2×2 matrices is a subsapce of $\mathbb{R}^{2 \times 2}$.
(a) \qquad
(b) (5 points) (TRUE/FALSE) The set V of all invertible 2×2 matrices is a subsapce of $\mathbb{R}^{2 \times 2}$.
(b) \qquad
4. (10 points) Find a basis of all polynomials $f(t)$ in P_{2} such that $f(1)=0$.
5. (10 points) Find the image, rank, kernel, and nullity of the transformation $T(M)=M\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.
6. (10 points) Find the matrix of the linear transformation $T(f)=f^{\prime \prime}+4 f^{\prime}$ from P_{2} to P_{2} with respect to the basis $\mathfrak{U}=\left(1, t, t^{2}\right)$ of P_{2}.
7. \qquad
8. Find the rank and nullity of the linear transformation $T\left(f(t)=f^{\prime \prime}(t)+4 f(t)\right.$ from P_{2} to P_{2}.
9. \qquad
10. (10 points) Find the orthogonal projection of $9 \vec{e}_{1}$ onto the subspace of \mathbb{R}^{4} spanned by $\left[\begin{array}{c}2 \\ 2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 1\end{array}\right]$.
11. \qquad
12. (10 points) Perform the Gram-Schmidt process on the sequence of vectors $\vec{v}_{1}=\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}25 \\ 0 \\ -25\end{array}\right]$.
13. \qquad
14. (10 points) Determine the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$ when \vec{x}^{*} is the least squares solution of the system $A \vec{x}=\vec{b}$ where $A=\left[\begin{array}{cc}6 & 9 \\ 3 & 8 \\ 2 & 10\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}0 \\ 49 \\ 0\end{array}\right]$.
15.
16. (10 points) Find the determinant of $\left[\begin{array}{llll}0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4\end{array}\right]$
17. \qquad
18. (a) (5 points) (TRUE/FALSE) The determinant of any diagonal $n \times n$ matrix is the product of the diagonal entries.
(a) \qquad
(b) (5 points) (TRUE/FALSE) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ for all 5×5 matrices A and B.
(b) \qquad
