Name: \qquad

1. (5 points) Determine if $\vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is in the span of $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \vec{x}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right], \vec{x}=\left[\begin{array}{l}1 \\ 4 \\ 8\end{array}\right]$. If so, write the coordinates of \vec{x} on the answerline. If not, write FALSE on the answerline.
2. \qquad
3. (5 points) Find the matrix B of the linear transformation $T(\vec{x})=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$ with respect to the basis $\mathfrak{B}=\left(\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
4. \qquad
5. (5 points) Find a basis W^{\perp} where $W=\left(\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right]\right)$.
6. \qquad
7. (5 points) Find an orthonormal basis of the plane $x_{1}+2 x_{2}-x_{3}=0$ in \mathbb{R}^{3}
8. \qquad
9. (5 points) Find the nullity of $T(f(t))=\int_{-2}^{2} f(t)$ from P_{2} to \mathbb{R}.
10. \qquad
11. (5 points) (True/False) If T is a linear transformation from P_{6} to $\mathbb{R}^{\times 2}$, then the kernel of T must be at least three dimensional.
12. \qquad
13. (5 points) Let V be the span of vectors $f_{1}(x)=1$ and $f_{2}(x)=x$. Find the matrix of $T(f)=3 f+2 f^{\prime}$ from V to V with respect to the basis $\mathfrak{B}=\left(f_{1}, f_{2}\right)$.
14. \qquad
15. (5 points) Find the best fit line $y=m x+b$ to the data points $(0,1),(1,1),(2,3)$ using least squares.
16. \qquad
17. (5 points) For which values of t is $\left[\begin{array}{ccc}t & 1 & 0 \\ 2 & t & 2 \\ 0 & 1 & t\end{array}\right]$ invertible?
18. \qquad
19. (5 points) Find the determinant of the matrix $B=\left[\begin{array}{lllll}0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 9 & 7 & 9 & 3 \\ 3 & 4 & 5 & 8 & 5 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$.
20. \qquad
21. (5 points) Find the determinant of $\left[\begin{array}{cccc}1 & 3 & 2 & 4 \\ 1 & 6 & 4 & 8 \\ 1 & 3 & 0 & 0 \\ 2 & 6 & 4 & 12\end{array}\right]$
22. \qquad
23. (5 points) Find the orthogonal projection of $\left[\begin{array}{l}49 \\ 49 \\ 49\end{array}\right]$ onto the subspace spanned by $\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}3 \\ -6 \\ 2\end{array}\right]$
24. \qquad
