Midterm 2

Name: _

- 1. (5 points) Determine if $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is in the span of $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \vec{x} = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}$. If so, write the coordinates of \vec{x} on the answerline. If not, write FALSE on the answerline.
- 2. (5 points) Find the matrix B of the linear transformation $T(\vec{x}) = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}).$
- 3. (5 points) Find a basis W^{\perp} where $W = \begin{pmatrix} \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \end{pmatrix}$.
- 4. (5 points) Find an orthonormal basis of the plane $x_1 + 2x_2 x_3 = 0$ in \mathbb{R}^3
- 5. (5 points) Find the nullity of $T(f(t)) = \int_{-2}^{2} f(t)$ from P_2 to \mathbb{R} .

5. _____

1. _____

2._____

3. _____

4.

6. (5 points) (True/False) If T is a linear transformation from P_6 to $\mathbb{R}^{\times 2}$, then the kernel of T must be at least three dimensional.

6._____

7. (5 points) Let V be the span of vectors $f_1(x) = 1$ and $f_2(x) = x$. Find the matrix of T(f) = 3f + 2f' from V to V with respect to the basis $\mathfrak{B} = (f_1, f_2)$.

8.	(5 points)	Find the best fit line $y = mx + b$ to the data points $(0, 1), (1, 1), (2, 3)$ u	ising least squares.
			8
9.	(5 points)	For which values of t is $\begin{bmatrix} t & 1 & 0 \\ 2 & t & 2 \\ 0 & 1 & t \end{bmatrix}$ invertible?	9
			-
10.	(5 points)	Find the determinant of the matrix $B = \begin{bmatrix} 0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 9 & 7 & 9 & 3 \\ 3 & 4 & 5 & 8 & 5 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$.	
			10
11.	(5 points)	Find the determinant of $\begin{bmatrix} 1 & 3 & 2 & 4 \\ 1 & 6 & 4 & 8 \\ 1 & 3 & 0 & 0 \\ 2 & 6 & 4 & 12 \end{bmatrix}$	
			11
12.	(5 points)	Find the orthogonal projection of $\begin{bmatrix} 49\\ 49\\ 49 \end{bmatrix}$ onto the subspace spanned by	$\begin{bmatrix} 2\\3\\6 \end{bmatrix} \text{ and } \begin{bmatrix} 3\\-6\\2 \end{bmatrix}$
			12

7. _____