You have 1hr 15min. Answer each non-graph question neatly on the line provided.
Name: \qquad

1. (10 points) For which value(s) of k does the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3}=-2 \tag{1}\\
3 x_{1}-5 x_{2}+13 x_{3}=18 \\
x_{1}-2 x_{2}+5 x_{3}=k
\end{array}\right.
$$

have no solution.

1. \qquad
2. (10 points) (True/False) There is a sequence of elementary row operations that transforms the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ into $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ?$
3. \qquad
4. (10 points) (True/False) Vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is a linear combination of the vectors $\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ and $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$.
5. \qquad
6. (10 points) Let A be a 4×4 matrix, and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^{4}. We are told that the system $A \vec{x}=\vec{b}$ is inconsistent. What can you say about the number of solutions of the system $A \vec{x}=\vec{c}$.
7. (10 points) Draw a sketch showing the effect of the linear transformation $T(\vec{x})=A \vec{x}$ on the unit circle $x^{2}+y^{2}=1$ when $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
8. (10 points) Find the matrix P of the orthogonal projection onto the line spanned by $\vec{w}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
9. \qquad
10. (10 points) Find the matrix of the mirror reflection about the $x-z$ plane in \mathbb{R}^{3}.
11. \qquad
12. (10 points) (True/False) $\left[\begin{array}{lll}11 & 13 & 15 \\ 17 & 19 & 21\end{array}\right]\left[\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right]=\left[\begin{array}{l}13 \\ 19 \\ 21\end{array}\right]$
13. \qquad
14. (10 points) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 9\end{array}\right]$. Find a basis of the image of A.

9.

\qquad
10. (10 points) Find a basis of the subspace of \mathbb{R}^{3} defined by $2 x_{1}+3 x_{2}+x_{3}=0$
11. (10 points) (True/False) The image of a 3×4 matrix is a subspace of \mathbb{R}^{4}.

