No Electronics

1._____

Name: _____

EMPLID: _____

1. (5 points) (True/False) If f'(c) = 0, then f has a local maximum or minimum at c.

2. (5 points) The graph of the derivative f' is shown does f have a local maximum?

3. (5 points) Find the interval(s) where $f(x) = x + \frac{4}{x^2}$ is increasing.

4. (5 points) Find the interval(s) where $f(x) = x^2 \ln x, x > 0$ is concave up.

2. _____

3. _____

4._____

5. (5 points) Evaluate $\lim_{x\to 0} \frac{\tan 3x}{\sin 2x}$.

6. (5 points) Evaluate $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$.

6. _____

5. _____

7. (10 points) Sketch the graph of $y = \frac{2x^2}{x^2-1}$. Label all asymptotes, local maximums, local minimums, and points of inflection on your graph. Hint $y' = \frac{-4x}{(x^2-1)^2}$ and $y'' = \frac{12x^2+4}{(x^2-1)^3}$.

- 8. (5 points) A rectangular storage container without lid is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs \$10 per square meter. Material for the sides costs \$6 per square meter. Find the height of the container that minimizes cost.
 - A. $5(\frac{9}{2})^{-\frac{2}{3}}$ B. $5(\frac{9}{2})^{\frac{2}{3}}$ C. $5(\frac{9}{2})^{-\frac{1}{3}}$ D. $5(\frac{9}{2})^{\frac{1}{3}}$
 - E. none of these

8. _____

9. (5 points) Find the antiderivative of $f(t) = \frac{2t - 4 + 3\sqrt{t}}{\sqrt{t}}$.

9._____

10. (5 points) Estimate the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right endpoints.

10. _____

11. (5 points) Find g'(x) when $g(x) = \int_0^{x^2} \sqrt{1+t^3} dt$.

11._____