Name: ____

EMPLID: _____

1. _____

2. _____

1. (5 points) Evaluate $\int_0^1 \frac{x}{(2x+1)^3} dx$.

2. (5 points) Evaluate $\int_{-\infty}^{0} 2te^{t} dt$.

3. (5 points) Determine whether the sequence $a_n = \cos\left(\frac{n\pi}{n+1}\right)$ converges or diverges. If it converges, find the limit.

4. (5 points) Let $a_n = \frac{2n}{3n+1}$. Which of the following are true.

- A. $\{a_n\}$ is a convergent sequence and $\sum_{n=1}^{\infty} a_n$ converges.
- B. $\{a_n\}$ is a convergent sequence and $\sum_{n=1}^{\infty} a_n$ diverges.
- C. $\{a_n\}$ is a divergent sequence and $\sum_{n=1}^{\infty} a_n$ converges.
- D. $\{a_n\}$ is a divergent sequence and $\sum_{n=1}^{\infty} a_n$ diverges.

4._____

3. _____

5. (5 points) (True/False) If $\sum a_n$ is divergent then $\sum |a_n|$ is divergent.

6. (5 points) Determine if the sequence $\sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}}$ is convergent or divergent. If it is convergent, find its sum.

7. (5 points) Determine if the series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ is convergent or divergent. State the test you used.

8. (5 points) Determine if the series $\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1+k^3}$ converges or diverges. State the test you used.

8. _____

5. _____

6. _____

9. (5 points) Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ converges or diverges. Justify your answer.

10. (5 points) (True/False) The series $\sum_{n=1}^{\infty} (-1)^n \frac{n^4}{3^n}$ is absolutely convergent.

11. (5 points) Which of the following are true statements about the series $\sum_{n=1}^{\infty} \frac{-n}{n^2+1}$.

- A. The series is absolutely and condititionally convergent.
- B. The series is condititionally covergent but not absolutely convergent.
- C. The series is absolutely covergent but not condititionally convergent.
- D. The series is absolutely and condititionally divergent.

11. _____

12. (5 points) Use the midpoint rule with n = 4 to evaluate $\int_0^2 \sqrt{1 + x^3} \, dx$. Do not simplify your answer.

12. _____

13. (5 points) (True/False) the series $\sum_{n=1}^{\infty} \frac{n!}{100^n}$ is absolutely convergent.