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If f : X → X is a continuous map and x ∈ X, we say that y is a limit point
for the associated dynamical system with initial value x, or just y is an ω
limit point of x, when y is a limit point of the orbit sequence {fn(x) : n ∈ T}
where T is the set of nonnegative integers. This means that the sequence
enters every neighborhood of y infinitely often. That is, for any open set
U containing y, the entrance time set N(x, U) = {n ∈ T : fn(x) ∈ U} is
infinite.

It is often useful to keep track of just how frequently these entrance times
occur. In his book Recurrence in Ergodic Theory and Combinatorial Number
Theory, Hillel Furstenberg used families of subsets of T to keep track of
the frequencies. A family F for T is just a collection of subsets, i.e. a
subset of the power set P of T , which is hereditary upwards. That is, if
F1 ⊂ F2 and F1 ∈ F then F2 ∈ F . A family is proper if it is a proper
subset of P , i.e. F 6= ∅,P . In view of heredity this says that F is proper
when T ∈ F and ∅ 6∈ F . For a proper family F we say that y is an F ω
limit point of x if N(x, U) ∈ F for all neighborhoods U of y. In Chapter
2 we present the elementary theory–implicit in Furstenberg’s work–for such
families and in Chapters 3 and 4 apply it to dynamical systems, in general,
and to topologically transitive systems, in particular.

This family approach goes back at least to Gottschalk and Hedlund (1955)
who in their Chapter 3 introduced admissible subset collections, in order to
unify several notions of recurrence, exactly our purpose.

When the state space X is compact, the semigroup theory of Robert Ellis
can be applied. For our purposes this is best described here as an extension
of the action of T on X to an action of βT , the Stone-Čech compactification
of T , on X. For x ∈ X we can define the orbit map ϕx : T → X by
ϕx(n) = fn(x). As T is discrete this is a continuous map which therefore
extends to a map Φx : βT → X. For p ∈ βT we write p(x) = Φx(p), thus
regarding the elements of βT as functions on X. Ellis observed that βT has
a natural semigroup structure satisfying (pq)(x) = p(q(x)). However, this
hybrid between the algebra and the topology on βT appears at first to be
rather mulish. Right translation is continuous but left translation is not, i.e.
p 7→ pq is continuous, q 7→ pq is not. Similarly, p 7→ p(x) is continuous but
p itself, x 7→ p(x), is usually not. Perhaps unsurprisingly the composition
in βT , while it extends addition on the dense subset T , is not commutative.
Despite these infelicities the semigroup structure on βT has proved very
fruitful in the study of dynamical systems.
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The reader should be aware that Ellis uses right rather than left actions
and so his semigroup structure on βT is the reverse of mine. His left trans-
lations are continuous and his compatibility equation reads (xq)p = x(qp).
Thus, the view in Chapters 6 and 7 is the mirror image of the Ellis way.

We can regard the points of βT as ultrafilters on T . A filter is just a
proper family which is closed under the operation of intersection. An ultra-
filter is a maximal filter. Thus, the two approaches meet. The Furstenberg
theory applies to ultrafilters as it does to all families, and some of the Ellis
constructions are nicely expressed in a family way. Furthermore, the fam-
ily approach is more general. Various family constructions do not preserve
the filter property. On the other hand, the semigroup structure with its as-
sociative law and collections of idempotents reveal properties about certain
special families which would not be otherwise apparent.

We now outline the contents of the chapters which follow.

1. Monoid Actions: Once you abandon compactness assumptions you
discover that various dynamic notions like equicontinuity and chain recur-
rence are really uniform space notions. The very definitions require a uni-
form structure. The associated topological spaces, i.e. the completely regular
spaces, appear in full generality when you take arbitrary products and sub-
sets. Each dynamical system in this book is a uniform action of an abelian
uniform monoid on a uniform space, written ϕ : T × X → X. The initial
chapter presents the easy set-up work to make sense of these phases.

An abelian topological group has a unique translation invariant uniform
structure obtained from the neighborhoods of the identity. An abelian uni-
form monoid is a submonoid T of an abelian topological group, i.e. T is
closed under addition and zero is in T but inverses might not be. Also,
T satisfies a mild technical condition, the Interior Condition, on the set of
tails. For t ∈ T the associated tail Tt is the image of T under translation by
t, Tt = {s + t : s ∈ T}. Any discrete abelian monoid, e.g. the nonnegative
integers, Z+, and any abelian topological group, e.g. R, is uniform monoid.
The nonnegative reals, R+ under addition is also uniform.

N. B. After Chapter 1 all monoids are assumed abelian unless otherwise
mentioned. All topologies are assumed Hausdorff.

An action is a function ϕ : T ×X → X such that the time t maps defined
by f t(x) = ϕ(t, x) satisfy the composition property f t1 ◦ f t2 = f t1+t2 . For ϕ
to be a uniform action we assume, first, that each f t : X → X is a uniformly
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continuous map of the uniform space X. Hence, the adjoint associate ϕ#

of ϕ which associates t 7→ f t is a homomorphism from T to Cu(X; X) the
space of uniformly continuous maps on X. The second condition of a uniform
action is that the homomorphism ϕ# is continuous, and hence is uniformly
continuous, when Cu(X; X) is given the uniformity of uniform convergence.
Thus, ϕ is a uniform action of each f t is uc and ti → 0 in T implies that
f ti → 1X uniformly on X. It then follows that ϕ is a continuous map (though
not uniformly continuous), i.e. ϕ is a topological action. When T is discrete
the second condition is trivial. In particular, a uniform action of T = Z+ is
just given by the iterates of a uc map f = f 1 on X. If T is uniform and X is
compact then any topological action ϕ : T ×X → X is uniform. Recall that
a compact space has a unique uniformity consisting of all neighborhoods of
the diagonal.

The use of monoids allows us to apply the theory to semiflows and nonin-
vertible maps. More importantly, even for a homeomorphism f on a compact
space X it is useful to distinguish between the Z+ action using f , the reverse
action which is the Z+ action using f−1, and the extended Z action which
includes them both. The limit point set for x associated with these are, re-
spectively, the ω limit set, the α limit set and the closure of the entire orbit
of x. For a monoid we move out towards infinity using the tails, Tt. If T is
a group then Tt = T for all t.

Finally, while our theory is motivated by the cases T = Z+,R+,Z and R
there is an least one other example worth mentioning here, namely T = Z∗,
the positive integers under multiplication (discrete uniformity). If X is a
compact topological group, eg. the unit circle in C, then Z∗ acts on X via
exponentiation. That the Z∗ action on the circle is strongly mixing will prove
useful, once the definitions are in place to make sense of the statement.

2. Furstenberg Families: For a uniform monoid T a family F is a
subset of P , the power set of T , which is hereditary upwards. F is a proper
family when ∅ 6∈ F and T ∈ F . The dual kF is {F : F meets F1 for every
F1 ∈ F}, or, equivalently, F ∈ kF iff T\F 6∈ F . For any family F , kF is
a family and kkF = F . Clearly, kP = ∅ and so kF is proper iff F is. The
largest proper family is P+ = P\{∅} whose dual, kP+, is {T}.

A filter is a proper family which is closed under intersection. A filterdual is
a family whose dual is a filter. F is a filterdual iff it satisfies what Furstenberg
calls the Ramsey Property: F1 ∪ F2 ∈ F ⇒ F1 ∈ F or F2 ∈ F . An ultrafilter
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is a maximal filter, or, equivalently, a selfdual filter.
Using the action of T on itself by translation we define gt : T → T the

translation map by t whose image is the tail Tt. Call a family F translation
invariant if for all t ∈ T , F ∈ F iff g−t(F ) ∈ F (where g−t(F ) denotes
the preimage (gt)−1(F )). F is thick if F ∈ F and t1, . . . , tk ∈ T imply
∩k

i=1g
−ti(F ) ∈ F . For any family F , γF denotes the smallest translation

invariant family containing F and γ̃F the largest translation invariant family
contained in F , so that kγF = γ̃kF . Define τF to be the largest thick family
contained in F . Observe that a translation invariant filter is automatically
thick.

The family γ̃P+, denoted BT , is the largest translation invariant proper
family. F ∈ BT iff g−t(F ) 6= ∅ for all t ∈ T . Its dual, kBT = γkP+ is the
family generated by the tails. F ∈ kBT iff g−t(F ) = T for some t ∈ T . kBT

is the smallest translation invariant proper family. It is a filter and so BT is a
filterdual. Notice that if T is a group then BT = P+ and kBT = kP+ = {T}.

In the case, T = Z+, BT is the family of infinite subsets and the dual
kBT is the family of cofinite subsets. The family τBT is called the family
of thick sets of Z+, F ∈ τBT if F has arbitrarily long runs, i.e. for every
N ∈ Z+ there exists t ∈ Z+ such that, t, t + 1, . . . , t + N ∈ F . The dual,
kτBT consists of the syndetic or relatively dense sets. F ∈ kτBT iff there
exists N such that every interval of length N meets F , i.e. for every t ∈ Z+,
{t, t + 1, . . . , t + N}∩F 6= ∅. τkτBT consists of what we will call replete sets
(Furstenberg uses “replete” as a synonym for thick, a waste of a fine word).
F ∈ τkτBT if for every N the positions where length N runs begin form a
syndetic set. All of these families are translation invariant and τkτBT is a
filter.

Translation invariant filters are quite useful. In general, if F is a filter
then F is contained in some translation invariant filter iff F ⊂ τBT .

Using the uniform structure on T , we call F an open family if every
F ∈ F is a uniform neighborhood of some other element of F , i.e. there
exists F1 ∈ F and V in the uniformity UT such that F ⊃ V (F1). One of the
purposes of the Interior Condition on a uniform monoid is to ensure that the
filter kBT generated by the tails is an open family. Of course, if T is discrete
and so the diagonal 1T ∈ UT then every family is open.

3. Recurrence: For ϕ : T ×X → X a uniform action and subsets A,B
of X we define the meeting time set N(A,B) = {t ∈ T : f t(A) ∩ B 6= ∅}.
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If we identify each map f t with its graph we can define the relation fF for
F ⊂ T to be ∪{f t : t ∈ F}. Thus, F meets N(A,B) iff f t(A) ∩ B 6= ∅ for
some t in F and so iff fF (A) ∩B 6= ∅.

Define N (A, u[B]) to be the family of subsets of T generated by all
N(A,U) where U is a uniform neighborhood of B, and N (u[A], u[B]) the
family generated by all N(W,U) where W and U are uniform neighborhoods
of A and B, respectively. Each of these is, when proper, an open filter.

Given a family F and a nonempty subset A of X we define ωFϕ[A] =
∩{fF (A) : F ∈ kF}. A point y ∈ ωFϕ[A] iff N(A,U) ∈ F for every
neighborhood U of y, i.e. iff N (A, u[y]) ⊂ F . In particular, we define the
relation ωFϕ ⊂ X ×X by ωFϕ(x) = ωFϕ[x] = ∩{fF (x) : F ∈ kF}. When
X is compact and F is a filterdual then ωFϕ[A] is nonempty and if U is an
open set containing ωFϕ[A] then U contains fF (A) for some F ∈ kF .

We define the closed relation ΩFϕ to be ∩{fF : F ∈ kF} taking the
closure in X ×X. Two points x, y satisfy y ∈ ΩFϕ(x) iff N(W,U) ∈ F for
every neighborhood W and U of x and y respectively, i.e. iff N (u[x], u[y]) ⊂
F . Equivalently, ΩFϕ(x) = ∩ωFϕ[W ], intersecting over all neighborhoods
W of x.

Finally, we say that x F adheres to a set B if N (x, u[B]) ⊂ F , i.e.
N(x, U) ∈ F for every uniform neighborhood U of B. If B is compact,
then the sufficient condition fF (x) ∩ B 6= ∅ for all F ∈ kF is necessary as
well. So if B is compact and F is a filterdual then x F adheres to B iff
ωFϕ(x) ∩ B 6= ∅. For any family F , ωFϕ(x) = {y : xF adheres to y}. In
particular, x ∈ ωFϕ(x) iff x F adheres to x. We call such a point F recurrent.

The usual notions of ωϕ and Ωϕ (cf. Akin (1993)) correspond to F = BT

and so we will drop the subscript in that case.
To describe the meaning of these concepts in certain important cases

recall that an action ϕ is called minimal if for B a nonempty, closed subset
of X, f t(B) ⊂ B for all t ∈ T (i.e. B is + invariant) implies B = X.
A closed, nonempty, + invariant subset is called a minimal subset if the
restriction of the action to B is a minimal action. Every compact, nonempty,
+ invariant subset of X contains a minimal subset. The closure of the union
of all minimal subsets of X is called the mincenter of X.

We call x a fixed point for ϕ if f t(x) = x for all t ∈ T , or, equivalently, if
{x} is a + invariant, and hence, minimal subset.

Now assume that ϕ : T ×X → X is a uniform action with X compact.
Let x ∈ X and B be a closed subset of X. If F is a filterdual then x F
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adheres to B iff ωFϕ(x) meets B and x kF adheres to B iff ωFϕ(x) ⊂ B.
In particular, x BT adheres to B iff ωϕ(x) ∩B 6= ∅ and x kBT adheres to B
iff ωϕ(x) ⊂ B. kτkτBT is a filterdual and ωkτkτBT

ϕ(x) is the mincenter of
ωϕ(x). So x kτkτBT adheres to B iff B meets the mincenter of ωϕ(x) and
x τkτBT adheres to B iff B contains the mincenter of ωϕ(x).

Furthermore, under this compactness hypothesis, x kτBT adheres to B
iff B meets every minimal subset of ωϕ(x), while x τBT adheres to B iff B
contains some minimal subset of ωϕ(x). In particular, x is kτBT recurrent
iff x is contained in some minimal subset of X (which is then, necessarily,
ωϕ(x)) and x is kτkτBT recurrent iff the minimal subsets of ωϕ(x) are dense
in ωϕ(x).

4. Transitive and Central Systems: A uniform action ϕ : T×X → X
is called F central, for a family F , if 1X ⊂ ΩFϕ, i.e. N (u[x], u[x]) ⊂ F for
all x ∈ X. This means that for every nonempty open set U , the return time
set N(U,U) is in F . The action is called F transitive if X ×X = ΩFϕ, i.e.
N (u[x], u[y]) ⊂ F for all x, y ∈ X. This means that for every pair U , W of
nonempty open sets N(W,U) ∈ F . ϕ is called central (or transitive when it
is BT central (resp. BT transitive). When ϕ is central it is a dense action,
that is, f t(X) is a dense subset of X for every t ∈ T . In the compact case
this means, of course, that f t(X) = X for all t.

Suppose X is a complete, separable metric space, e.g. compact metric
space, and that ϕ is a uniform action, with T separable as well. If ϕ is
central then the set of recurrent points, |ωϕ| = {x : x ∈ ωϕ(x)}, is a residual
subset of X. If ϕ is transitive then the set of transitive points, Transϕ = {x :
ωϕ(x) = X}, is a residual subset of X. For a central, uniform action ϕ with
a separable T on any compact space X the set of recurrent points is always
dense, but the analogous result for transitivity is false. If T is separable and
the continuous image fT (x) is dense in X then X is separable and so has
cardinality at most 2c, that of βZ+. However, transitive actions occur on
spaces of arbitrarily large cardinality.

The action ϕ is called weak mixing when the product action ϕ × ϕ on
X ×X is transitive. Furstenberg’s beautiful Intersection Lemma yields that
a uniform action ϕ is weak mixing exactly when it is τBT transitive. For a
translation invariant family F we call ϕ F mixing when it satisfies the fol-
lowing equivalent conditions: (1) ϕ×ϕ is F transitive, (2) ϕ is τF transitive,
(3) ϕ is F transitive and weak mixing, (4) ϕ is F central and weak mixing,
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(5) ϕ is F1 transitive for some translation invariant filter F1 ⊂ F . It follows
that if ϕ is an F mixing action on X then the product action induced on an
arbitrary product XI is also F mixing, and so is, a fortiori, transitive.

We call ϕ strong mixing when it is kBT transitive ( = kBT mixing as kBT

is a filter), topologically ergodic or just ergodic when it is kτBT transitive and
ergodic mixing when it is both ergodic and weak mixing, which is equivalent
to τkτBT mixing. Many transitive systems are in fact ergodic and the gap
between the two notions consists of peculiar systems.

A uniform action ϕ̃ : T × X̃ → X̃ is called an eversion if X̃ is compact,
the action is surjective (f̃ t(X̃) = X̃ for all t) and there is a fixed point e ∈ X̃
such that for every neighborhood U of e, the times {t : f t(X\U) ⊂ U} ∈ BT .
If ϕ : T × X → X is a surjective uniform action with X compact and
x ∈ X such that x 6∈ ΩkτBT

ϕ(x) (and so ϕ is not kτBT central) then there
is an eversion ϕ̃ with fixed point e and a continuous map h from X onto
X̃ relating the actions such that x 6∈ h−1(e). It follows that a transitive
but nonergodic system on a compact space has a transitive but nontrivial
eversion as a factor.

One application of this machinery is an extension of a theorem of Kro-
necker: Let ϕ : T ×X → X be a uniform action with X compact metric and
T separable. If ϕ is weak mixing then there exists a Cantor subset A of X,
i.e. a compact, perfect, zero-dimensional subset, such that {f t|A : t ∈ T}
is dense in C(A; X). Thus, every continuous map from A into X can be
uniformly approximated by the special maps f t|A : A → X. The existence
of so-called Kronecker subsets of the circle arise from the application of this
result to the strongly mixing action of T = Z∗ on the circle by (n, z) 7→ zn.

5. Compactifications: For a uniform space X let B(X) denote the
Banach algebra of bounded, real-valued continuous functions on X with the
sup norm. Let Bu(X) denote the closed subalgebra of uniformly continuous
functions in B(X).

For any closed subalgebra E of B(X) let jE denote the map from X to
the dual space E∗ associating to x ∈ X evaluation at x, i.e. jE(x)(u) = u(x)
for u ∈ E. The map jE : X → E∗ is continuous when E∗ is given the weak∗

topology. Let XE denote the closure of the image jE(X). The set XE con-
sists of all algebra maps from E to R and XE is compact with the topology
induced from E∗. Furthermore, the induced map j∗E : B(XE) → B(X) is a
B algebra isometry with image E. This Gelfand theory classifies the com-
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pactifications of X, i.e. continuous maps from X to a compact space, via
the closed subalgebras of B(X). Associated with B(X) is the Stone-Čech
compactification βX and with Bu(X) is the uniform Stone-Čech compactifi-
cation denoted βu(X). The latter is especially important for our purposes.
The map ju : X → βu(X) (ju ≡ jBu(X)) is uniformly continuous and is a
topological embedding, i.e. a homeomorphism of X onto its image in βu(X).
It is, however, a uniform isomorphism onto its image only when X is totally
bounded. The points of βuX can be identified with the maximal open filters
on X.

The space XE is metrizable iff the algebra E is separable. If X is a sep-
arable metric space with bounded metric d then a special metrizable com-
pactification, the Gromov compactification, is obtained by using the algebra
Ed generated by the functions {d(x) : x ∈ X} where d(x)(x1) = d(x, x1).

If ϕ acts uniformly on X and E is a closed subalgebra of B(X) then
each f t : X → X factors through jE exactly when the algebra maps f t∗ :
B(X) → B(X) all preserve E, i.e. when E is ϕ invariant. If, in addition,
E ⊂ Bu(X) then ϕ extends to a uniform action ϕE : T × XE → XE such
that jE : X → XE maps the action ϕ to ϕE.

If ϕ is F central (or F transitive) and E ⊂ Bu(X) is ϕ invariant then the
compactified flow ϕE on XE is F central (resp. F transitive). Conversely,
if ϕE is F central (or F transitive) for any compactification with jE : X →
XE an embedding or, when T is separable, for all compactifications with
E separable (and hence with XE metrizable) then ϕ is F central (resp. F
transitive).

6. Ellis Semigroups: Addition, T × T → T , can be regarded as the
translation action of T on itself. For a uniform monoid this translation action
is uniform and so extends to a uniform action T × βuT → βuT where βuT
is the uniform Stone-Čech compactification. Fixing the second coordinate
yields a uniformly continuous map from T to βuT which extends to βuT .
The result is an associative composition βuT × βuT → βuT , (p, q) → pq.
However, only the right translation iq(p) = pq is continuous on βuT .

For a uniform action T × X → X with X compact, fixing the second
coordinate yields a uniformly continuous map of T to X which extends to
βuT . The result is an action of the semigroup βuT on the space X but by
not necessarily continuous maps. Φx : βuT → X defined by Φx(p) = px is
continuous for each x and (pq)(x) = p(qx), extending the associative law on
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βuT .
Starting with this example, Ellis studied compact semigroups. An Ellis

semigroup S is a, usually nonabelian, semigroup with a compact topology
such that each right translation is continuous on S. For any compact space
X, the function space XX is an Ellis semigroup under composition of maps
with the product topology. An Ellis action of an Ellis semigroup S on a
compact space X is a, usually not continuous, function ϕ : S×X → X such
that the adjoint associate ϕ# is a continuous semigroup homomorphism from
S to XX . Its image, denoted Sϕ, is an Ellis subsemigroup of XX called the
enveloping semigroup of ϕ.

An element e of S is called idempotent when e2 = e. Namakura’s Lemma
says that any compact semigroup contains idempotents. For example, if ϕ
is an Ellis action on X and x ∈ X then Isox = {p ∈ S : px = x} is a closed
subsemigroup if it is nonempty. It then follows that idempotents fixing x
exist. A point x is called S recurrent if the isotropy set Isox is nonempty.

7. Semigroups and Families: In βuT the semigroup structure can be
described using family ideas. For p ∈ βuT we pull back by the embedding
ju : T → βuT the filter of neighborhoods of p. We obtain Fp a maximal
open filter of subsets of T . The point px is the point in the singleton set
ωFpϕ(x) = ωkFpϕ(x).

In general, for any open filter F of subsets of T , the hull H(F) = {p ∈
βuT : F ⊂ Fp} is a closed subset of βuT and the compact subset {px : p ∈
H(F)} is ωkFϕ(x).

Recall that a filter F is thick if F ∈ F and t ∈ T imply g−t(F ) ∈ F .
Define F ∈ F to be F semiadditive for a filter F if t ∈ F implies g−t(F ) ∈ F .
A filter F is called semiadditive if it is generated by F semiadditive sets, i.e.
F ∈ F implies F ⊃ F1 with F1 ∈ F an F semiadditive set.

For any open filter F , let H be the hull of F . F is semiadditive iff
ωkFµ[H] ⊂ H where µ is the translation action of T on βuT . Notice that
this implies ωkFµ(H) = {pq : p, q ∈ H} is contained in H and so H is
a closed subsemigroup. ωkFµ(H) = ωkFµ[H] in the particular case where
H is a singleton. As a corollary we see that the maximal open filter Fp is
semiadditive iff p is an idempotent.

Assume the hull H(F) is a subsemigroup, e.g. F is semiadditive or trans-
lation invariant. If ϕ : T ×X → X is a uniform action with X compact and
x ∈ X, then x is recurrent for the filterdual kF , i.e. x ∈ ωkFϕ(x), iff x is
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H(F) recurrent, i.e. the isotropy set Isox ⊂ βuT meets H(F). There then
exists an idempotent e such that F ⊂ Fe ⊂ kF .

The family ∪{Fe : e ∈ βuT\T and e2 = e} is the filterdual generated by
the so-called IP sets.

8. Equicontinuity: For a uniform action ϕ : T × X → X Lyapunov
stability of a point x ∈ X, or of its orbit, is equicontinuity at x of the
family of functions {f t : t ∈ T}. To get the version associated with a
family F , we define for V ∈ UX and F ⊂ T , V F

ϕ = ∩t∈F (f t × f t)−1(V ),
and EqF

V,ϕ = {x ∈ X : (x, x) ∈ Int V F
ϕ }. Then let EqFV,ϕ = ∪F∈FEqF

V,ϕ and
EqFϕ = ∩V ∈UX

EqFV,ϕ.
We call x an F , V equicontinuity point if x is in the open set EqFV,ϕ and an

F equicontinuity point if it is in EqFϕ , i.e. if it is an F , V equicontinuity point
for all V in UX . Thus, x ∈ EqFϕ if for every V ∈ UX there is a neighborhood U
of x and F ∈ F such that (f t(x1), f

t(x2)) ∈ V for all (t, x1, x2) ∈ F ×U ×U .
The action is called F equicontinuous if X = EqFϕ , i.e. X = EqFV,ϕ for

all V ∈ UX . The action is F almost equicontinuous if for each V ∈ UX the
open set EqFV,ϕ is dense in X. So for an F almost equicontinuous action on
a complete, metrizable space X the set EqFϕ of F equicontinuity points is a
dense Gδ. For the case F = kBT , the filter generated by the tails, we drop the
superscript F and refer simply to equicontinuity point, almost equicontinuity
etc.

For a translation invariant family F , if ϕ is kF transitive and F al-
most equicontinuous then ϕ satisfies the a priori stronger condition of al-
most equicontinuity. In fact, for every V ∈ UX , EqT

V,ϕ is open and dense and
EqFϕ = Eqϕ = Transϕ = {x : ωϕ(x) = X}.

If ϕ is an almost equicontinuous action on a compact space with Transϕ 6=
∅ but which is not minimal and so is not equicontinuous then ϕ is not topo-
logically ergodic and so has as factor a topologically transitive, nontrivial
eversion. The eversion factor can be chosen almost equicontinuous as well.
Such peculiar actions do, in fact, exist.
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