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Abstract. We describe the — unexpected — occurrence of stable limit cycles in the
two locus, two allele model. No frequency dependence is involved. The cycles
are due to the interaction between recombination and natural selection.
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1. Introduction

In general the genetic state of a Mendelian population is represented by a point in
some high dimensional space, but imagine this space is a flat plane. Over this plane
there lies a surface whose height at each point represents some measure of the
“fitness” or *‘selective value” of the corresponding state. This is Sewall Wright’s
adaptive topography. Under the influence of evolutionary forces the population
state is presumed to move in a direction of increasing fitness, approaching an
equilibrium represented by a peak, or local maximum, of the surface.

The purpose of this paper is to consider how well the adaptive surface picture
represents the effects of the forces of natural selection and recombination.

Let 7 be the (finite) list of gamete genotypes of the population. The state of the
gene pool is described by a distribution vector p with p; for ie I the ratio of the
number of gametes of type i to the total number of gametes. Thus, p is an element of
the simplex 4, i.e. the state space of the population is:

A= {peRl:p,>0forallieland }p;, = 1}.

p is called an interior distribution if all of the gamete types occur in the population.
So the set of interior distributions is:

A={ped:p;,>0foralliel}.

A zygote type consists of a pair of gametes §j with i and je I. The fitness or
Malthusian parameter of zygote type ij is a real number m;; representing the birth
rate minus the death rate of the type. Since ij and ji represent the same zygote type
the matrix is symmetric:
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m;; = mj; (i and jeI). (1.1)
The effect of natural selection is then modeled by the system of differential
equations (see Crow and Kimura, 1970, p. 191):

dp,
dt

where m; =) ;p;m;; is the mean fitness of gamete type / and m =Y ,pim; =
Z,-’ ;Pipjm;;is the mean fitness of the entire population. Notice that while the m;;’s
are constants m; and /z vary with the population state p. These equations assume the
Hardy-Weinberg condition that the zygote distribution is the product of the gamete
distributions.

Fisher’s Fundamental Theorem of Natural Selection says that under the
influence of equations (1.2) the mean fitness /n is constantly increasing, except at
equilibria where m remains constant with p. Kimura’s Maximum Principle says,
moreover, that the direction of change in (1.2) is the direction of greatest increase of

m

= pm; — m) (iel), (1.2)

The latter result is a bit puzzling. It suggests that the right side of (1.2) should
consist of the components of the gradient of /# which it does not. The key to the
puzzle is Kimura’s definition of direction, or vector of unit length, namely a vector
of unit variance with respect to the distribution p at which the vector is based.

Shahshahani and Conley noted that the concept of gradient depends on the
choice of a mathematical structure called a Riemannian metric. With respect to the
metric implicit in Kimura’s definition p;(m; — ) is exactly the i component of the
gradient of rz/2. So we will denote the vectorfield on 4 corresponding to equations
(1.2) by V(m/2) where ¥ is the operator of gradient in the Shahshahani sense.
Fisher’s Theorem and Kimura'’s Principle are immediate consequences of this result
(Shahshahani, 1979, p. 5). The geometry of A equipped with the Shahshahani
metric turns out to be a natural tool for population genetics.

Thus, for selection modeled by (1.2) Fisher’s Theorem justifies the adaptive
surface picture. The fitness function on 4 is just mean fitness m. Furthermore,
selection moves the population up the gradient of fitness once the concept of
gradient is interpreted properly.

However, for multilocus models (1.2) is incorrect. Its derivation is based on the
assumption that the gametes produced by an ij zygote are all of type i or j, whereas
new gamete types will be produced by independent assortment among the
chromosomes and by crossovers within the chromosomes. This introduces
additional terms on the right of (1.2) which are the components of the recom-
bination vectorfield. For the two-locus-two-allele model the recombination field
was derived by Kimura. The extension to multilocus models is a matter of
introducing notation to keep tracking of the required book-keeping. This was done
by Shahshahani. The combined effect of selection and recombination is modeled by
a vectorfield on 4:V(/2) + R, where R is the sum of new terms. The recom-
bination field has the following properties (these are proved in Akin, 1979, Sec.
I11.2).

(1) Recombination does not affect the distribution of alleles at each locus. It
only changes the linkage between loci. A distribution p is said to be in linkage
equilibrium if it is the product of the distributions of alleles at each locus. The set of
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distributions in linkage equilibrium is a submanifold A of A. Furthermore, for each
peA there is a unique n(p)e A such that p and n(p) have the same marginal
distributions at each locus. R vanishes on A and if we look at recombination alone,
i.e. solve dp;/dt = R(p); at pe A, then p approaches the equilibrium r( p).

(2) Define the entropy of a distribution by H(p) = — ) p;logp; and the
normalized entropy by A(p) = H(p) — H(rn(p)). H and H are real valued functions
on A. H is negative except on A where it vanishes. Under the influence of
recombination alone H is constantly increasing, except at the equilibriain A. So His
a Lyapunov function for recombination. However, in contrast with the selection
field, recombination is not the gradient of A. In fact, the recombination field is not
the Shahshahani gradient of any function. This fact is crucial in what follows.

What happens to mean fitness under the combined effects of selection and
recombination? Ewens (1969a) proved that Fisher’s Theorem still holds in the
absence of epistasis, i.e. provided that fitness is additive between loci. However,
Moran (1964) showed that 2 need not always increase. With the benefit of
hindsight this result is easy to see. Suppose that the matrix m;; is such that 7 has an
isolated maximum at a point p, in 4 but p,¢ A (this requires epistasis!). Now
introduce a small recombination term (tight but incomplete linkage). Since
Do ¢ A, R does not vanish at p, and so p, is not an equilibrium for the combined
field. Since R is a small perturbation of the selection field there is a new point p, near
Po Which is an equilibrium for the combined field. 7z is less at p, than at p,,. So if one
begins at p, and approaches p, under the influence of the combined field, 7 must
necessarily decrease on part of the path.,

Moran’s work left open the conjecture that the combined field admits some
Lyapunov function other than 7 (see Ewens, 1969b, p. 96). Akin (1979) showed this
conjecture to be false by demonstrating that the differential equation of selection
plus recombination can admit periodic solutions. Thus, the problem is not in the
choice of fitness function. It lies in the original intuition underlying the adaptive
surface picture, namely the belief that these systems always tend to equilibrium.

Now the occurrence of cycling even under selection alone is well known for
“frequency dependent” models, i.e. where the m;;’s depend on p. Perhaps the basic
example with three gamete types is given by Kimura (1958), p. 154:

dp,

_dt— = pi(p2 — P3),

dp,

a P2(P3 — p1)s

dps

I — . 1.3
di p3(p1 — P2) (1.3)

Thus, under (1.3) type 1 increases where p, > ps, type 2 increases when p; > p,,
etc.

These equations also arise in the study of evolutionary games (see Taylor and
Jonker, 1978 ; Zeeman, 1979 ; Akin, 1980). The models are identical with (1.2) but
the assumption that m;; be symmetric, i.e. (1.1), is dropped. In fact, the matrix for
(1.3) is the skew-symmetric matrix:
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0 1 -1
-1 0 1
I -1 0

This is the so-called “paper-rock-scissors” game.
To see the cycles, introduce polar coordinates on A centered at p* = (4,1,3),
defining:

1
r= - gzlog:;pw

—1 P27 Py

P3— D1
The radial coordinate r is just a linear adjustment of the log of the product p, p, p;.
r 2 0 by convexity of the log function, with r = 0 at p*, The angular coordinate § is
undefined at the origin, p*, and is defined up to addition of 2.

It is easy to check that dr/dt = 0, i.e. under the influence of (1.3) r and hence
P1P2P, remain constant. On the other hand, on 4 — p* the vectorfield of (1.3) turns
out to be the positive function (p, — p;)? + (p3 — p;)* times the Shahshahani
gradient of §. Notice that while 0 is not a well-defined real valued function its
gradient is well-defined. Thus, starting at any point of A — p* one remains on a
closed curve defined by p,p,p; = constant and moves so that @ continually
increases.

In frequency dependent models like (1.3) the occurrence of cycling is often
intuitively clear from the nature of the selection pressures. However, in the constant
fitness case the cycles are completely unexpected.

The abstract nature of the proof in Akin (1979) leaves open several questions
about the cycles.

(1) Position Effects: The absence of position effects amounts to the assumption
of a number of additional symmetry conditions on the matrix m;;in addition to (1.1)
(see Akin, 1979, p. 106). Can the cycles occur for matrices with no position effects?

(2) Robustness: Is the cycling behavior robust, i.e. maintained despite small
perturbations of the model? For example, Zeeman has shown that in evolutionary
game models with three strategies cycles are never robust.

(3) Stability: Can stable cycles, i.e. limit cycles, occur?

To study these questions it is useful to look at the two-locus-two-allele (TLTA)
case as this is the simplest model where selection and recombination can interact.
Akin (1981) answers these questions affirmatively by constructing examples in the
TLTA case without position effects admitting robust limit cycles. Furthermore, a
program is there developed which generates all such examples in the TLTA case.

The cycles arise as a consequence of the Hopf Bifurcation Theorem. In the next
section we review the phenomenon of Hopf bifurcation. In the following sections
we summarize Akin (1981) by outlining the program and reporting a class of
numerical examples.

Because the cycling is robust it will continue to occur in related models of
selection and recombination. At the end of Sec. 3 we will discuss the model of
Nagylaki and Crow (1974) which does without the mathematically convenient, but

6 = tan

(1.4)
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biologically unrealistic assumption of Hardy-Weinberg proportions. We will also
look at discrete-time models and the recent work of Hastings.

Because the cycling may be stable, it is, in principle, observable. Initial positions
near such an attractive cycle tend to be pulled in toward it. However, the cycles
appear to be rather low frequency, i.e. long period cycles. Such behavior, were it to
occur in real data, would not be recognized as cycling. It would more likely be
mistaken for drift or a “moving equilibrium” tracking slow environmental change.
At the end of Sec. 4 we will return to this frequency question.

2. Hopf Bifurcation
The state space for the TLTA case is

4
A={peR4:p,->0fori=1,...,4and Y pi= l}.

i=1

The vectors tangent to 4 form a three-dimensional subspace of R*:

4
RS = {veR“: Y o= 0} :
i=1

Consider any vectorfield X on 4, i.e. X is a function from 4 to Rj. Associated
with X is the differential equation:

dp
i X(p) (ped). , (2.1
t
Thus, a solution of (2.1) is a path in 4 which is everywhere tangent to X. The
condition that X(p) lie in R, i.e. Y, X(p); = 0, comes from the fact that } ;p,
remains constant for p in A.

A point, p,, is an equilibrium for the equation (2.1) if X vanishes at that point,
i.e. if X(py) = 0.

To study the behavior of (2.1) near the equilibrium p, we linearize, that is,
change variables by p = p, + v (with ve R}) and differentiate X at p, to get a linear
map L:R§ — Rj. The linearized equation is then:

dv
—=L) (veRd. 2.2)
dt

The behavior of solutions of (2.2) depend on the eigenvalues of L which are the
roots of the characteristic equation det(¢ — L) = 0 or

03— To* + Mo — D=0, 2.3)

where T'is the trace of L (= the sum of the eigenvalues) and D is the determinant of
L (= the product of the eigenvalues). M is the sum of the 2 x 2 diagonal minors of
L in any matrix representation.

The extent to which one can use (2.2) to study (2.1) near p, depends on these
eigenvalues. p, is called a nondegenerate equilibrium if 0 is not an eigenvalue or
equivalently if the determinant D does not vanish. It follows from the inverse
function theorem that a nondegenerate equilibrium is isolated and if the original
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vectorfield is perturbed slightly then there is a unique equilibrium of the perturbed
field near p,. We used this condition in discussing Moran’s paper.

Do is called a hyperbolic equilibrium if no eigenvalue has real part zero or
equivalently if the set of eigenvalues avoids the entire imaginary axis and not just 0.
A hyperbolic equilibrium is not only isolated, but a theorem of Hartman says that
the behavior of solutions of (2.1) near p, is similar to the behavior of solutions of
(2.2) near 0. In other words, for a hyperbolic equilibrium the linearized equation
really does describe the original one near equilibrium.

A classic result of Lyapunov says that if the real parts are all negative then p, is
an attractor, i.e. solutions beginning near p, return toward p, and approach it in the
limit as ¢ approaches infinity. The imaginary part of the eigenvalues determines the
nature of the returning path. Solutions associated with real negative eigenvalues
approach equilibrium tangent to some ray. A nonzero imaginary part induces a
rotation so that solutions associated with complex eigenvalues spiral in toward
equilibrium.

Equation (2.3) has three roots and complex roots come in conjugate pairs.
Hence, there are either three real eigenvalues or else one real one and one complex
conjugate pair. In the latter case we can write the roots as ¢ + iA and p with 4 > 0.
The only way a nondegenerate equilibrium can fail to be hyperbolic is with a pair of
conjugate imaginary roots and a nonzero real root, i.e. ¢ = 0 and the roots are + i4,
uwith A > 0 and u # 0. In that case we will call p, a Hopf equilibrium. So p, is a
Hopf equilibrium if L has an imaginary eigenvalue and the determinant of L is
nonzero. These conditions can be detected from the coefficients of the characteristic
equation.

Lemma 1. Let L: R} - R} be a linear map. L has an imaginary eigenvalue iff the
following conditions hold.

D=M-T 2.4)
and
M > 0. (2.5)

In this case the real eigenvalue is T which has the same sign as D.

Proof. Equation (2.4) says that T'is a root of (2.3). In that case, the other two roots
sum to zero and M is their product. So M < 0 if these two are real and M > 0if they
are conjugate imaginaries. Q.E.D.

Because a Hopf equilibrium fails to be hyperbolic the behavior of solutions near
it cannot be predicted from the linearization alone. For example, if 4 < 0 it may be
true that the equilibrium is an attractor but if so this depends on higher order terms
ignored by the linearization. In a heroic feat of calculation Marsden and
McCracken have written down a formula for a number which depends on the
second and third derivatives of X at p, and which determines the stability of the
equilibrium in certain cases. Suppose that y is negative. If this number, which I dub
MARMUC, is also negative then the Hopf equilibrium is an attractor and we will call
it a Hopf attractor. If MARMC is positive then p, is not an attractor. Finally, if
MARMC = 0 the decision depends on still higher terms.
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The computation of MARMC depends on the use of a special coordinate
system, or basis, analogous to a basis of eigenvectors in the real eigenvalue case.

Lemma 2. Suppose an orientation and inner product ( , ) are chosen for RE and
suppose that the eigenvalues of L: Ry — R§ are ¢ - iA (A > 0) and ¢ + p (writing the
real eigenvalue as ¢ + p instead of u is a matter of notational convenience). Then there
exists a positively oriented orthonormal basis {u, v, w} for R and a positive number k
such that the matrix of L with respect to {u,v, w} is given by

€ Ak oy
— k™t ¢ Va2 . (2.6)

0 0 e+u
Proof. Associated with the complex eigenvalue ¢ + il is a complex eigenvector
ug + ivg. Multiplying by the complex number a + ib gives another complex
eigenvector u; + iv, with

u, = auy — by, and v; = avy + buy.
Computing the inner product of u, with v, we get:
(uy,v1) = (a® — b?)(uo, Vo) + ab[(uo, o) — (vo, V0)]-

Now if (uy,00) = 0 then choose a =1 and b =0, i.e. u; + vy = uy + ivg. If
(19, vo) # 0 then choose a,b > 0 such that r = a/b is the positive root of the
quadratic equation:

r—r~ 1 = [(vo, Vo) — (Uo,Uo)]/(4o, Vo).

So in any case, u, + iv, is a complex eigenvector with (u, v,) = 0. Now define:

u = uy /|| = uy f(ug, u0)"?,
v = v /l|v1]| = v (01, vy)'?,
k= |[uy|l/lloq]l-

Here one needs to notice that {u,,v,} are linearly independent since u; + ivy # 0
and A # 0. In particular, neither vector equals 0.

Finally, since R} is three dimensional there is a unique line through the origin
perpendicular to the plane spanned by u,, v, or equivalently by «, v. Choose w to be
the unit vector on this line such that {u, v, w} is positively oriented. {u, v, w} is an
orthonormal basis and it is fairly straightforward to check that the matrix of L is
given by (2.6). Q.E.D.

We will call {, v, w} an eigenframe for the linear map L and k the skewness of L.
I recommend that the reader digest all this by ruminating on the following
example:

d
E);— =ex + Ay + 8(x* + y?)x,

d
e R AR GRS

d
=t we @.7)
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The origin is an equilibrium whose linearization is obtained by setting § = 0.
The eigenvalues are ¢ + id and ¢ + u. The eigenframe is the standard basis and the
skewness is 1.

Replacing the rectangular coordinates by cylindrical coordinates with
r* = x> + y? and 6 = tan™ !(y/x) we get the equations:

dr

— =¢r + or’,
dt

do

dt ’
dz
dt

If ¢and ¢ + u are not zero then the origin is a hyperbolic equilibrium, attracting
if both are negative.

If ¢ = 0 and p # 0 then the origin is a Hopf equilibrium and MARMC s §. If u
and ¢ are negative then the origin is still an attractor. However, if 4 = 0 so that the
original equation is linear then the plane z = 0 is filled with concentric circular
orbits. Compare system (1.3).

There is an important difference between a hyperbolic attractor and a Hopf
attractor which is illustrated by this system.

Perturbing the equations slightly does not change the attracting character of a
hyperbolic attractor. This is because the eigenvalues are perturbed slightly and so
remain to the left of the imaginary axis. In other words, a hyperbolic attractor is a
robust attractor. This is not true of a Hopf attractor. Consider what happens on the
z = 0 plane as ¢ changes sign from negative to positive. The results depend on the
sign of MARMC = §:

6 = 0: When ¢ < 0 all of the orbits spiral in toward the origin and when ¢ > 0
all of the orbits spiral out away from the origin. When ¢ = 0 the nonequilibrium
orbits are all cycles about the origin.

6 < 0: When ¢ < 0all of the orbits spiral in toward the origin. When ¢ > 0 then
orbits beginning far away spiral in and orbits near the origin spiral out. These two
regimes are separated by a unique cycle which is a circular orbit of radius (¢/ — 5)/%.
If, in addition, u < 0 then this circular orbit is a limit cycle, i.e. it is an attractor. As ¢
increases the radius of the cycle increases proportionally to g'/2.

6 > 0: This case is the reverse of the previous one. Unique cycles appear with ¢
negative as circular orbits of radius (— &/6)!/2. Now, however, the cycles are
repelling separating a regime of spirals into the hyperbolic attractor at the origin
and a regime of spirals outward to infinity.

The occurrence of cycles associated with Hopf equilibria is the phenomenon of
Hopf bifurcation.

Suppose that p, is a Hopf equilibrium for a vectorfield X and that there is a
family of vectorfields depending on a real parameter p with X corresponding to
p = 0. Since p, is nondegenerate the perturbed equilibria and their eigenvalues
are functions of p. Assume that the real part g(p) of the complex eigenvalues
satisfies:

= (¢ + pz. (2.3)
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de(p)
dp

£0 at p=0 2.9)

This means that as p changes sign so does ¢(p) and the complex eigenvalues cross the
imaginary axis. Furthermore, ¢ is a monotone function of p with e = 0 when p = 0.
Inverting to get the function p(e) and substituting has the effect of replacing the
parameter p by ¢ itself.

Thus, for ¢ near zero we have a one parameter family of vectorfields X* with
X° = Xandequilibria p, of X* depending smoothly on ¢. The eigenvalues of X at p,
are given by & + iA(¢) and u(e) with i(e) > 0 and pu(0) 0. So by shrinking the
domain of ¢ we can assume u(c) has the same sign as pu(0) for all e.

The Hopf Bifurcation Theorem (Marsden and McCracken, 1976, Theorem
3.15) says that if p, is a Hopf attractor for X, i.e. u(0) < 0 and MARMC <« 0, then
for ¢ > 0 small enough there is a unique periodic solution for X* cycling around p,
and attracting nearby orbits. Furthermore, these cyclic attractors are robust in that
any small enough perturbation of X* merely distorts the cycle.

Actually, the Hopf Bifurcation Theorem describes the occurrence of cycles for
any family of vectorfields perturbing a Hopf equilibrium and satisfying (2.9).
However, robust limit cycles are predicted only in the Hopf attractor case.

The program of the following section describes the Hopf equilibria for the
TLTA model, shows how to decide which are Hopf attractors and provides a
perturbation technique to get the cycles.

3. The Hopf Variety of the TLTA System

In the TLTA case, we denote by 4, a and B, b the two alternate alleles at the two loci.
The four gamete genotypes are numbered by:
1 = 4B, 2 = Ab, 3 = aB, 4 = ab.

If the population is in state p e 4 then the marginal distributions, i.e. the gene
distributions at each locus are defined by:

Pa=Dy+ P2 Pp=p1 + D3,

Pa = P3 + Pa, Py = P2 + Pa.
On 4 the difference measure of linkage disequilibrium is defined by:

d=pips — P2P3. 3.1
The name arises from the following easily checked equations:
P1=papPp +d,
P2 =DaPy — d,
p3 =pup — 4,
P4 = PaPp + 4. (3.2)

Define the vector ¢ of R} to be (1,—1,—1,1). Then (3.2) says that
p — n(p) = d¢é. Recall that n( p) is the distribution in 4 having the same marginals
as p but in linkage equilibrium.
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Table 1
aa Aa AA
BB ms;3 my3 = My, My
Mg = My,
Bb M34 = Myy = = myy = My,
my3 = M3,
bb Mys My = My, maz

A selection matrix (m;;) is the symmetric 4 x 4 matrix of zygotic fitnesses. We
assume the absence of position effects which means that the two double
heterozygotes have the same fitness. In addition to the symmetry condition, (1.1),
this means we assume:

M4 = My3. (3.3)

Any selection matrix can be displayed by a 3 x 3 table (see Table 1).

Adding a common constant to all of the m,;’s has no effect on the selection
differential equation. This is because the magnitude of iz describes the rate at which
the entire population is growing while the rate of increase of p; depends only on the
difference m; — m. Alternatively, the addition of the constant to the function m does
not affect its gradient on A. Thus, we can assume that the central element of Table 1
is zero. In other words, we define a normalized selection matrix to be a symmetric
4 x 4 matrix satisfying

m14=m23 =0 (3.4)

The set M of normalized selection matrices is an eight dimensional vectorspace.
For the TLTA model the recombination vectorfield Ris equal to — rb d¢ (Crow
and Kimura, 1970, p. 197), i.e. the differential equations for selection plus
recombination are given by:
dp; _ .
i pi(m; — m) — rb d¢, (i=1,...,4). (3.5)
Here r is the recombination rate in crossover per birth and b = b, = b,; is the
birthrate for the double heterozygotes. Thus, rb is a nonnegative constant.

The behavior of (3.5) depends only on the ratio of rb to the fitness numbers m;;
provided that the former is positive. This is because multiplying the matrix (m;;) and
the scalar rb by a positive number s has the same effect as the time change of
replacing the variable ¢ by #/s. Thus, multiplication by a positive constant does not
affect what happens only the rate at which it happens. We normalize (3.5) by
assuming

rb=1, (3.6)
and define for every normalized selection matrix the vectorfield X™ on A by
X"(p)i =pi(m; —m) —dé;  (i=1,...,4). (3.7)

Thus, everything depends on the ratio of fitness to recombination and the selection
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matrices which our program generates are really ratios. One then can get an
example with any positive rate of recombination rb one likes by muitiplying by the
chosen rb value. Compare the discussion in Akin (1979), Sec. 1.9.

The vectorfields of (3.7) form an eight dimensional family parametrized by M.
We can write this as a function X: M x 4 — R{ defined by X(m, p) = X™(p). We
define the equilibrium manifold X to be the set of pairs (m, p) such that p is an
equilibrium for X™, i.e.

X ={(m,p)e M x A: X(m,p) = 0}.

2 isan eight dimensional submanifold of M x A. Infact, the projection of X onto M

is a local diffeomorphism at (m, p) € X iff p is a nondegenerate equilibrium for X™.

These results follow from the fact that X is a submersion of M x 4 onto Rg.
We are looking for Hopf attractors and so we define the Hopf variety:

2y = {(m,p)e X: The linearization of X™ at p
has an imaginary eigenvalue}.

It is possible to give an implicit description of X as the solution set of algebraic
equations and inequalities in the variables p; and m;;. First, X is defined by the
vanishing of the right side of (3.7). So X is described by four equations of which
three are independent. Notice that these equations are linear in the m;; variables. By
choosing a coordinate system on 4 it is possible to write down explicit formulae for
the coefficients of the characteristic polynomial of the linearization of X™ at p. This
yields three functions T, M, D: 2 — R. Lemma 1 of the previous section then says
that (m, p) e X lies in Xy iff D(m, p) = T(m, p) - M(m, p) and M(m, p) > 0. Removing
the subset of degenerate equilibria where D(m, p} = 0 divides Xy into two open
subsets of Hopf equilibria defined by the sign of the real eigenvalue. In principle, if
one has a point (m, p) in X ; with D(m, p) # 0itis possible to compute MARMC and
so find the Hopf attractors.

The problem with this approach is the Eq. (2.4) is nonlinear in the variables p;
and my;;. It is not clear how to solve it to get examples in X'y. Instead we look for a
parametric description of X;;. This consists of a seven dimensional manifold Sy and
a function ¢ of Sy onto X5. Then by choosing parameter values, i.e. a point of Sy,
the map oy gives an explicit formula for an element of X', i.e. a list of values for p;
and m;; such that (m,p)eXy. Also the parametric description allows one to
compute the eigenframe for the linearization (cf. Lemma 2 of the previous section)
and so to compute MARMC fairly directly.

In order to get Hopf bifurcations from Hopf attractor examples we parametrize
not just Xy but:

Xc = {(m,p)e X: The linearization of X™ at p
has a complex eigenvalue}.

X is an open subset of ¥ and contains X.

As often happens in applied problems, it is important to choose the right system
of coordinates. It is clear from the biology that two of the coordinates on 4 should
describe the state of two loci separately, €.g. p, and pp. The proper choices turn out
to be:
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X=pi+Py—P3—Pa=Pa—Pa=2p4— 1,
Yy=p1—P2+P3—DPa=pg—Pp=2pp— L.

x and y vary between — 1 and + 1. The origin where x = y = 0 corresponds to
Pa = P. = Pp = Py = 3. This point, or rather the segment in 4 mapping to it, plays a
special role in the theory as we will see below.

For the third coordinate there are three natural choices:

zZ=p1 —P2—P3+ Pas

d=pips— P2p3,

L =logp, —logp, — logp, + logp,
=log(p,ps) — log(p,p3)

= log(p1p4/P2p3)-

z has the advantage that like x and y it is linear in the p;’s. On the other hand it is
not directly a measure of linkage disequilibrium. The condition of linkage
equilibrium is described by the equation z = xy. d, the difference measure of
disequilibrium, we have already met as it occurs in the formula for X™. L, the log of
the ratio measure of disequilibrium, is theoretically important but hard to use in
computations. Its importance comes from the fact that the Shahshahani gradient of
L, VL, is a nonvanishing vectorfield on A4 which is everywhere tangent to the
segments of constant gene frequency at each locus. In other words as one moves
tangent to VL, x and y remain constant. This implies that VL is everywhere
perpendicular to ¥x and Fy.

A key step in the parametric description is the introduction of the analogue of a
cylindrical coordinate system at points of A. We restrict attention to A because the
Shahshahani metric is only defined at interior distributions.

The vertical coordinate is L. We normalize the gradient of L by dividing by its
length to get the unit vectorfield:

Ver = PL/|PLJ. (3.8)

The length of FL, and all other lengths, are computed using the Shahshahani
metric.
Now define the angular coordinate:

# = tan"1(y/x).

As usual @ is not defined when x = y = 0 and is only defined up to multiples of 2x.
The gradient of @ times x? 4+ y? defines the vectorfield:

Ang, = xVy — yFx. (3.9)

Ang, vanishes when x = y = 0 but only vanishes there because Vx and Vy are
linearly independent. So we can normalize to define:

Ang = Ang,/||Ang,|| (undefined when x = y = 0). (3.10)

Because Ang, is a linear combination of ¥ x and Py it is perpendicular to ¥ L. By
direct computation one can show that it is also perpendicular to the gradient of:
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N =logp, + logp, + logp; + logp,
= log(p1p4) + log(p,p3)

= log(p1p2pipa)-

This means that the functions log(p,p,) + log(p,p;) are constants of motion
for the vectorfield Ang,. Consequently, log(p; ps) and log( p,p;) are constants of
motion and hence so is d which is the difference of their antilogs. We conclude that
Ang, and hence Ang are perpendicular to VL, Ver and Vd.

Now define the vectorfield:

Rad; = (x(1 — y?) —4dy) Vx + (y(1 — x?) — 4dx)Vy
= Vi[x? + > — x2y? — 8xyd] + 4xy Vd. (3.11)

Again Rad, vanishes only when x = y = 0 and is perpendicular to L. So we
can normalize to define

Rad = Rad,/||Rad,|| (undefined when x = y = 0). (3.12)

One can check that Rad, and Ang, are mutually perpendicular. This implies
that we have a set of three mutually perpendicular unit vectorfields {Ver, Rad, Ang}
defined at every interior distribution away from the origin segment where
x = y = 0. In other words, we have an orthonormal basis or a frame defined at each
point. We call it the cylindrical frame, B..

This frame does not come from a system of coordinates. To see this, look at the
candidate for the radial coordinate. Define R? to be the bracketed expression in
(3.11):

R* = x% + y? — x?y? — 8xyd. (3.13)

As it happens R? = ||Ang,||> + x2y? and so R? > 0 on A vanishing only at the
origin segment.

Because Ang is perpendicular to Rad, and to Pd it follows from (3.11) that it is
perpendicular to F1R?, i.e. R, too, is a constant of motion for Ang. The equatlons
L = some constant and R = some posmve constant define a closed curve in 4 and
Ang is everywhere tangent to it pointing in the direction of increasing 6. So the flow
of Ang consists entirely of closed cycles at constant L levels. However, the cycles do
not fit together to make vertical cylinders. Because of the V’d term in (3.11) VAR is
not perpendicular to Ver.

The concept of a moving frame was introduced by the geometer Elie Cartan to
do just the job we want, namely to generalize the concept of coordinate system.

To see why the cylindrical frame is natural for the study of these cycles, we recall
the proof of Akin (1979), Theorem IV.3, the existence theorem for the cycles.

If X is any vectorfield on A we can define the linearization of X at any point p
(equilibrium or not). It is a linear map L,(X): R — Rg obtained by differentiating
X at p. Dual to Lp(X ) is a bilinear form called the Hesszan H,,(X ). The Hessian
operator is linear in X, i.e. if X and Y are vectorfields on A then H, (X + Y) =

H,(X) + H,(Y) at every point p. Furthermore, a vectorfield X is a gradient (with
respect to the Shahshahani metric) iff H,(X) is a symmetric form at every point p. In
particular, the Hessian of the selection field F(/2) is everywhere symmetric.
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Furthermore, if we fix some point p then by choosing the selection matrix properly
we can arrange that H,(V(2/2)) be any symmetric form at all. On the other hand,
the recombination field R is not a gradient. Hence, at some point p, H,(R) is not
symmetric, i.e. it has a nonzero antisymmetric part. So by varying the selection
matrix one can cause a Hopf bifurcation to occur at such a point.

In eigenvalue language, if H,(X) is symmetric then L,(X) can be represented by
a symmetric matrix and so has only real eigenvalues. In other words, complex
eigenvalues for L ,(X) require an antisymmetric part for H,(X). In particular, for
X™ this antisymmetric part must come from the recombination term. It turns out
that H,(R) is symmetric for p € A iff p is in linkage equilibrium, i.e. d = 0, or p lies on
the origin segment, i.e. x = y = 0. Thus, L,(X™) has only real eigenvaluesif d = 0 or
if x = y = 0. Notice that if p lies in the boundary of 4 and d # 0 then p cannot be an
equilibrium point for X™ because selection points along the boundary and
recombination points into the interior. As a consequence, if (m, p)e X then pe 4’
where

A ={ped:d+0and (x,y) # (0,0)}.

This explains the special role of the origin segment and also why we can ignore
boundary points.

So everything depends on the antisymmetric part of H,(R). As it happens this
bilinear form annihilates the vectorfield Ang. It follows that the cylindrical frame is
an eigenframe for the antisymmetric part of the linearization of R.

We arrive at the parametric description by working backwards. Begin with
(m,p)eZ¢. peA’ and so the cylindrical frame is defined at p and induces an
orientation on R§. By Lemma 2 of the previous section there exists an eigenframe
B, = {u, v, w} for the linearization L™ of X™ at p. The orientation of B, is chosen
to agree with that of the cylindrical frame %B,. With respect to 8B, the matrix of L
is given by (2.6). In particular, the eigenvalues of L™P are g + iA (A > 0)and ¢ + p
and the skewness is £ > 0. The bases B, and B, are related by a 3 x 3 matrix O.
Since the bases are orthonormal and of consistent orientation O is an orthogonal
matrix of determinant 1, i.e. O is a member of the special orthogonal group SO(3).
The convention that 1 is positive turns out to imply the condition

d0s; > 0, (3.14)

i.e. O3 is nonzero and has the same sign as d. Notice that d # 0 because pe 4.
For the parametric description define

Sy = {(p,0,k)ed x SOB3) x R: ped’, k> 0 and dO;; > 0},
Sc=Sp xR={(p,0,k,e): ped, k>0 and dO;; > 0}.

Because SO(3) is a three dimensional manifold, S and S; are open manifolds of
dimension seven and eight respectively.
On Sy there are defined two real valued functions Nm and Dn. Now define

SH = {(M,I%O,k)E[R x SHZ Nm — ,LtDn = 0}
§C=§H x R.

To a point (u,p, O, k,e)e Sc there corresponds a unique normalized selection
matrix m = (m;) satisfying the following properties:
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(1) pis an equilibrium point for X™, i.e. (im,p)eX.

(2) (m,p)e Z¢. In fact, if the frame B, is defined by the condition that it is
related to B, by the matrix O then B, is an eigenframe for the linearization. With
respect to B, the matrix of the linearization is given by (2.6) with ¢, y and k given by
the point of S.

(3) The entries of m as well as A,y,,y, are given by explicit formulae in the
variables u, p;, O;;, k and ¢.

In practice we use the open subsets:

SHz{(p,O,k)ZDI’I#O}, 3',=S'H><[R.
These subsets map to Sy and S‘C respectively by defining:
u = Nm/Dn. (3.15)

The map oc: 8¢ — Z¢ defined by ac(u,p, 0,k,¢) = (m,p) and its restriction
oy Sy — Xy are smooth maps onto their ranges. The induced maps on S and S
are onto an open dense subset of their ranges.

The program is used as follows: Begin with a point (p, O, k) € Sy;. Compute Nm
and Dn. Check that Drn # 0 and that u defined by (3.15) is negative. Compute the
matrix (m;;) and 4,y,,7,. Compute MARMC using the frame B,. Check that
MARMC is negative. At each stage if one of the check steps fails go back and begin
with a new point in Sy. In this way one hunts for Hopf attractors. Actually the
formulae of the program allow one to make asymptotic estimates which describe
certain regions of the parameter space where the associated pair (m, p) is a Hopf
attractor.

Once one has found (p*, 0*, k*)e $y such that y and MARMC are negative
then one looks at the line (p*, O*, k*, ¢) in §- and computes the selection matrix mg;.
The entries turn out to be linear functions of &. For each ¢, (m*, p*)e X and the
family X™ parametrized by ¢ execute a Hopf bifurcation at the common
equilibrium point p*. Since p* is a Hopf attractor when ¢ = 0, it follows that robust
limit cycles occur for all X™ with ¢ small and positive.

The formulae for Nm, Dn, m;;, etc. are all rational functions of the p;, O,; and k
variables except for three expressions which are square roots of simple polynomials
in the p;’s. This is important because while we need only determine the sign of
MARMC our examples depend on landing exactly on points of the submanifold
4. While the cycles are robust it is not clear a priori how robust, i.e. to what
accuracy one can round off and still observe them. Thus, for the examples in the
next section I give exact results, which are rather messy fractions and then round off
the three place decimals so that the reader can get a sense of the shape of the
selection pressures. However, the cycling is only certain for the fraction version.

We conclude this section by looking at related models.

In deriving (1.2) and (3.5) the zygote genotype distribution is computed from the
gamete distribution by assuming Hardy-Weinberg proportions. The direct study of
selection and recombination for zygote distributions was initiated by Nagylaki and
Crow (1974) and carried on by Nagylaki and by Hoppensteadt. In particular, they
made rigorous the belief that the older models are good approximations when the
evolutionary forces are weak.
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Following the notation of Nagylaki and Crow (1974) we define:

fertility : ;= b + sby + sby,
mortality: d; =d+ se;,
recombination: ¢ = sr,

where b;; and e;; satisfy (1.1) and (3.3), and r > 0. Fertility is assumed additive and s
is a positive parameter measuring the strength of selection and recombination.

If P;;is the frequency of the ij zygote then the departure from Hardy-Weinberg
proportions is measured by Q,;, i.e.

Pij=pipj + Qi) (3.16)

When the correct equations for selection and recombination are written down it
becomes apparent that Hardy-Weinberg proportions are not preserved, i.e.
{Q;; = 0} is not an invariant manifold for the system. However, by applying the
invariant manifold theorem of Hirsch, Pugh and Shub (1977) it follows that there is
an attracting invariant manifold nearby, provided that s is sufficiently small. It can
be defined by writing Q;; as a function of p and s. Its precise shape depends on b;;, e;;,
etc. but as we are holding these numbers fixed we suppress them as arguments of the
functions Q;;. Thus, at quasi-Hardy-Weinberg equilibrium the zygote genotypes
are again functions of the gamete genotypes via (3.16). Furthermore, as s
approaches zero the functions Q;;( p, s) approach zero together with all derivatives
in the p variables. Finally, on the invariant manifold selection and recombination
can be written as

dp; _
o sLpi(m; — m) — rbd&; + F(p, s)], (3.17)
where F(p, s); approaches zero with s and m;; = b;; — e;;.
Now replace ¢ by the time variable t = st to get
dp; _
P pim; — m) — rbdl; + F(p,s);. (3.18)

So on the invariant manifold of quasi-Hardy-Weinberg proportions the motion
is a perturbation of (3.5). If (3.5) has a robust limit cycle of period T, (3.18) will have
a limit cycle of period approximately 7 for all s sufficiently small. Hence, (3.17) will
have a limit cycle of period approximately T/s for all s sufficiently small.

For discrete-time models the results also carry over if selection is weak. Define
m;; = logw,;; where w;; is the positive matrix of multiplicative parameters of
selection. For weak selection, i.e. w;; — w small compared with w:

Wij— W

In particular, im &~ w and m; — m =~ (w; — w)/w. Substituting in (3.5) and replacing
dp;/dt by Ap,/s we get the usual discrete model with a strength parameter s. Thus,
under weak selection and tight linkage a numerical solution of (3.5) is a path for the
discrete model. When the cycles are attracting they will be observable in a numerical
solution.
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The discrete-time model can be examined directly. Alan Hastings has been
investigating equilibria of the discrete TLTA model using a linear programming
approach. Recently, and independently, he has discovered stable cycles. He should
soon have a comprehensive plot of his examples.

4. Cycling Examples

The actual programming of my ‘“‘program” was done in collaboration with my
colleague Stanley Ocken. In particular, he introduced me to the MACSYMA
package at MIT which is nicely adapted to our algebraic needs.

The point p is chosen to be:

p =025 52 = (0.325,0.225,0.225,0.225)
at which
x=y=z=3%=01 and d=z2=00225.

The orthogonal matrix O is the 3 x 3 identity matrix. In particular, O3, = 1

which is positive as is d.

The parameter k£ as well as ¢ are left as free variables. Dn is not zero and
u = Nm/Dn is given by

. (kz—l) 0.166
k="35 100. /390 \k? + 1 B

In particular, u is negative for all values of %.

A= 3 < k ) 00248< k ) = =0
IENGACES] ' K2+1)’ nE=r =0

These values describe the matrix (2.6) of the linearization of X™ at the point p with
respect to the eigenframe. Since O is the identity the eigenframe is the cylindrical
frame {Ver, Rad, Ang} at p.
The selection parameters m;; are given by:
4,194 . 18 (kl - 1) . 40
— - g,
7,605 45, /390 k? +1 13

2,236 2 k? -1 40
YY) =m33 = + 390 +-78,

my, =

T 7,605 45 kK2+1) 9
234 38 (kz — 1) N 40
= — e —8,
Mas 7,605 45 /390 \k* + 1 9

My, =My = M3 = M3y =

15,561 18 (kz — 1)
7,605 45./390 K+1)’

18,187 14 k*—1
Myy = Myy = M3g = My3 = — 7605 +25 300 \k2 + 1 >

My =My =My; =Mz = 0.
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Table 2

k=11 aa Aa AA

BB —0.294 + 4.44¢ - 2.05 — 0.550 + 3.08¢
Bb —-2.39 0 —2.05

bb 0.027 + 4.44¢ —2.39 —0.294 + 4.44¢
k=17 aa Aa AA

BB —0.292 + 4.44¢ —2.07 — 0.532 + 3.08¢
Bb —2.38 0 —2.07

bb — 0.010 + 4.44¢ —2.38 —0.292 + 4.44¢

Setting ¢ = 0 to get the Hopf equilibria we compute MARMC and discover
MARMC <0 provided k> 1.02.

Hence, for every value of k > 1.02 the above matrix with ¢ = 0 has a Hopf
attractor at p. Hence, robust limit cycles occur for each such & provided that ¢ is a
small enough positive number.

To see the pattern of the selection matrices we write them in the form of the
genetic table for two representative values of k, rounding off to three decimal places
(see Table 2).

When ¢ = 0 the maximum of mean fitness in the £ = 1.1 case occurs at fixation
at a and b, i.e. when p, = 1. This vertex is an attractor for selection alone and
recombination increases the strength of attraction. However, in the k = 7 case the
maximum of mean fitness occurs on the line between vertex 4 and vertex |
(= fixation at 4B). Recombination moves this stable equilibrium into the interior.

In both cases mean fitness has a saddle point in A. So selection alone has a
hyperbolic interior equilibrium. The simplest conjecture is that this equilibrium
continues to the Hopf attractor p at unit recombination. If so this might yield a
general picture of how these cycles arise, namely, it may be that increasing strength
of recombination can have the effect of stabilizing an initially hyperbolic, i.e. saddle
point, equilibrium in the interior. For weaker levels of recombination, i.e. before the
critical level at which the equilibrium becomes a Hopf attractor and beyond which it
is a hyperbolic attractor, cyclic attractors occur in a neighborhood of the
equilibrium, The resolution of this conjecture requires qualitative analysis of the
behavior of the examples.

This analysis should be made easier by the use of the symmetry which occurs in
certain of the examples and is exhibited by the particular cases given above.

The symmetric viability model studied by a number of authors culminating in
Karlin and Feldman’s work (1970) is the class of models invariant under the
involution ny: 4 — 4 defined by no(p1, P2, P3.P4) = (Pa,P3,D2,P1). It is related to
the origin symmetry of the xy square defined by n,(x,y) = (— x, — »). For cycling
examples the involution to look at is n,:4 — 4 defined by =, (p1,p2,P3,P4) =
(P1,P3, P2, P4) Which is related to reflection across the diagonal in the xy square
defined by 7. (x,y) = (y, x). Notice that our examples are diagonal symmetric.
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For examples which are n, symmetric, and this includes the ones above, the
fixed point set of n, , defined by p, = p; or equivalently x = y, is an invariant subset
for the vectorfields. This fixed point set is a two dimensional cell in 4 and the cycles
occur in it. Since two dimensional dynamical systems are rather tractable, it should
be possible to give a complete description of the behavior of these symmetric
examples, at least on and close to the fixed point set.

Notice that as k approaches co, u and the selection parameters ;; do not change
much, but 1 approaches 0. Since / is the approximate frequency of the cycles, we get
cycles of arbitrarily low frequency. Multiplying X™ by s, i.e. replacing m;; and rb by
sm;;and srb, also multiplies 1 by s. So as selection gets weaker and linkage tighter (s
approaches zero) the pattern of behavior is the same but occurs at a slower rate. In
particular, the frequency gets lower. Furthermore, one cannot hope to have A
approach co while the m;;’s remain bounded because an eigenvalue is bounded by
the norm of the linear map. This means that there exists some constant K > 0 such
that

A < Kmax(|m;;|, rb).

All this suggests that low frequency, long period cycles may be the rule.
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