1. Use Newton's method to approximate a of the nonlinear system $0=f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}+1$ and $0=f_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$.
(a) $x_{1}=\left(\frac{3}{2}, 0\right)$ and $x_{2}=\frac{1}{12}(3,-2)$ when $\vec{x}_{0}=(1,1)^{T}$.
(b) Write code to find $x_{4}=[1.00000003,-1.54953310 e-08]$ when $\vec{x}_{0}=(1,1)^{T}$. This FPI converges to $(1,0)$.
(c) $x_{1}=\frac{1}{3}(-1,4)$ when $\vec{x}_{0}=(-1,2)^{T}$. Use Numpy to approximate $x_{5}=[-2.32830616 e-10,1.00000000]$. This FPI converges to $(0,1)$.
(d) What goes wrong when the intial guess is $\vec{x}_{0}=(0,0)^{T}$? The jacobian J is singular at $(0,0)$ and it is impossible to solve $J p_{k}=F\left(x_{k}\right)$.
2. Use Newton's method to approximate a of the nonlinear system $0=f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$ and $0=f_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{3}$.
(a) Find $x_{1}=(1,1)$ by hand when $\vec{x}_{0}=(1,2)^{T}$.
(b) Write code to find $x_{5}=[0.82603136,0.56362416]$ when $\vec{x}_{0}=(1,2)^{T}$. Does this FPI converge? Yes it seems to have stabilized 8 digits after decimal place at $x_{5}=[0.82603136,0.56362416]$.
(c) Find $x_{1}=\left(\frac{5}{4},-1\right)$ by hand when $\vec{x}_{0}=(2,0)^{T}$. Use Numpy to approximate $x_{4}=[-1.07763436,-0.98422872]$. This FPI seems to converge to $x_{8}=[-0.82603136,-0.56362416]$ to 8 decimal places.
