1. 
2. Let $A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -2 \\ -3 & 9 & 7\end{array}\right]$.
(a) Find the eigenvalues and eigenvectors of $A$ by hand. $\lambda_{1}=3, v_{1}=(1,-1,3), \lambda_{2}=-2, v_{2}=(0,1,-1)$, and $\lambda_{3}=1, v_{3}=(-1,1,-2)$.
(b) Use the power method by hand with initial guess $v_{0}=(1,0,0)$ to find $v_{1}=\frac{1}{\sqrt{11}}(-1,-1,3)$ and $\lambda_{1}=7$.
(c) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,0,0)$ to find $v_{1}=\frac{(6,-13,21)}{\sqrt{6^{2}+13^{2}+21^{2}}}$.
(d) Use the inverse power method by hand with $\alpha=-1$ and with initial guess $v_{0}=(1,0,0)$ to find $v_{1}=\frac{(3,-7,9)}{\sqrt{3^{2}+7^{2}+9^{2}}}$.
3. Let $A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -2 \\ -3 & 9 & 7\end{array}\right]$.
(a) Use the power method with initial guess $v_{0}=(1,0,0)$ to find $v_{11}=[-0.30278232,0.29928181,-0.90484986]$ and $\lambda_{11}=3.02109187541328$.
(b) Use the inverse power method with $\alpha=0$ and with initial guess $v_{0}=(1,0,0)$ to find $v_{9}=$ [0.40805248, $-0.40845098,0.81649309]$ and $\lambda_{9}=0.998467873996931$.
(c) Use the inverse power method with $\alpha=-1.7$ and with initial guess $v_{0}=(1,0,0)$ to find $v_{8}=$ $[0.00557856,0.70987412,-0.70430648]$ and $\lambda_{8}=-2.035276365005557$.
4. Let $A=\left[\begin{array}{ll}7 & 4 \\ 3 & 6\end{array}\right]$.
(a) Find the eigenvalues and eigenvectors of $A$ by hand. $v_{1}=(4,3), \lambda_{1}=10$ and $v_{2}=(-1,1), \lambda_{2}=3$.
(b) Use the power method by hand with initial guess $v_{0}=(1,1)$ to find $v_{1} \frac{(11,9)}{\sqrt{202}}$ and $\lambda_{1}=\frac{113 * 11+87 * 9}{202}$.
(c) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,1)$ to find $v_{1}=\frac{(1,2)}{\sqrt{5}}$ and $\lambda_{1}=9$.
5. Let $A=\left[\begin{array}{ll}7 & 4 \\ 3 & 6\end{array}\right]$.
(a) Use the power method by hand with initial guess $v_{0}=(1,1)$ to find $v_{18}=[0.8,0.6]$ and $\lambda_{18}=$ 10.000000000054238 .
(b) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,1)$ to find $v_{13}=[-0.70710599,0.70710757]$ and $\lambda_{13}=2.9999988839824407$.
6. Find the singular values of each of the following matrices.
(a) $\sigma_{1}=2, \sigma_{2}=1$.
(b) $\sigma_{1}=5, \sigma_{2}=0$.
(c) $\sigma_{1}=\sqrt{3}, \sigma_{2}=1$.
7. Find the SVD of each of the following matrices.
(a) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $A=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 0\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$
(c) $V=\left[\begin{array}{ccc}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}\end{array}\right], U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $\Sigma=\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
