1. Determine if each function has a unique fixed point in the given interval.
(a) $g(x)=1-\frac{x^{2}}{4}$ on $[0,1]$. It has a fixed point by the applying the IVP to $f(x)=1-\frac{x^{2}}{4}-x$ on $[0,1]$. Since $\left|g^{\prime}(x)\right| \leq \frac{1}{2}$ on $[0,1]$ there is only one fixed point.
(b) $g(x)=2^{-x}$ on $[0,1]$. Use a similar argument as (a) to show there is one and only one fixed point in $[0,1]$.
(c) $g(x)=\frac{1}{x}$ on $[0.5,5.2]$. You can see there is one fixed point by graphing $g(x)$ and $y=x$. FPI may not converge because $\left|g^{\prime}(1)\right|=1$.
2. Use FPI when $g(x)=-4+4 x-\frac{x^{2}}{2}$. Find the actual errors and the actual relative errors for each iterate.
(a) $x_{1} \approx 1.7949, x_{2} \approx 1.5689, x_{3} \approx 1.0450$ when $x_{0}=1.9$.
(b) $x_{1} \approx 3.9799, x_{2} \approx 3.9997, x_{3} \approx 3.9999$ when $x_{0}=3.8$.
(c) $\left|g^{\prime}(2)\right|=2>1$ so FPI will diverge when x_{0} is near the fixed point $x^{*}=2 .\left|g^{\prime}(4)\right|=0$ so FPI will converge fast if x_{0} is near the fixed point $x^{*}=4$.
3. Use FPI when $g(x)=0.5 x+1.5$. Find the actual errors and the actual relative errors for each iterate.
(a) Find $x_{1}=3.5, x_{2}=3.25, x_{3}=3.125, x_{4}=3.0625, x_{5}$ when $x_{0}=4$.
(b) Fixed point $x^{*}=3$.
(c) Can FPI be used to find a fixed point of $g(x)=x^{2}+x-4$. Explain. FPI will most likely diverge from both fixed points since $\left|g^{\prime}(2)\right|=5>1$ and $\left|g^{\prime}(-2)\right|=3>1$.
4. Make cobweb (staircase) diagrams for each of the following. Make a rough sketch. This is not a good way to approximate the answer, just a rough sketch to see what is going on.
5. $f(x)=x \sin x$ has a root x^{*} between $a=2$ and $b=4$ because it is continuous and
(a) Use the Bisection Method for f, a and b to find $x_{8}=3.14453125$.
(b) Use the Bisection error formula to find an error bound for your approximate root $x_{8} . e_{8} \leq \frac{1}{2^{8}}$.
(c) How many steps of Bisection are necessary to get 11 digits of accuracy after the decimal place? 44 steps are sufficient since it takes at most 4 steps of Bisection to stabilize one digit.
6. Let $f(x)=e^{x}-x-2$.
(a) $a=0$ and $b=2$ gives $f(a) \cdot f(b)<0$.
(b) Use the Bisection Method for f, a and b to find $x_{8}=1.14453125$.
(c) Use the Bisection error formula to find an error bound for your approximate root $x_{18} \cdot e_{18} \leq \frac{1}{2^{18}}$.
(d) How many steps of Bisection are necessary to get 9 digits of accuracy after the decimal place? 36 iterations will safely give 9 digits of accuracy.
7. (a) $x^{*}=\sqrt{5}$ can be approximated by using Newton's method on $0=f(x)=x^{2}-5$ giving $x=g(x)=$ $x-\frac{x^{2}-5}{2 x}$. In this case $x_{3}=2.236067977915804$ when $x_{0}=2$.
(b) Use the Secant Method to find the approximate roots $x_{2}=-2.1065989847715736, x_{3}=-2.0226414123070677$, and $x_{4}=-2.0015110973304853$ to $f(x)=x^{3}-3 x+2$ when $x_{0}=-2.6$ and $x_{1}=-2.4$.
8. (a) Use Newton's method to find the approximation $x_{11}=2$ to a root of $f(x)=x^{3}-3 x-2$ when $x_{0}=2$. Give your answer with 10 decimal places of accuracy.
(b) Repeat the above problem with different initial approximations $x_{0}=-3$ then $x_{11}=-1.0015415688887797$. Newton's method converges slower to the root $x^{*}=-1$ than to the root $x^{*}=2$ because $f^{\prime}(-1)=0$ and this is an obvious problem in Newton's Method.
