1. (a) Find the length of $a=(2,-2,1)$ and find two independent vectors that are perpendicular to a.
(b) What is the angle between $a=(2,-2,1)$, and $b=(1,2,2)$?
(c) What is the projection of $b=(1,2,2)$ onto $a=(2,-2,1)$?
(d) What is the projection of $b=(1,-2,2)$ onto $a=(2,-2,1)$? Verify $\hat{r} \perp a$.
(e) What is the projection of $b=(1,1,1)$ onto the plane spanned by? $(1,0,0)$ and $(1,1,0)$ Verify $\hat{r} \perp(1,0,0)$ and $\hat{r} \perp(1,1,0)$.
2. Geometry of matrix multiplication as a linear transformation.
(a) Project the vector $b=(1,2,2)$ onto the line through $a=(1,1,1)$. Check that $\hat{r}=b-P b$ is perpendicular to a.
(b) Find the best least squares solution \hat{x} to $3 x=10,4 x=5$. How is the residual minimized? Check that the residual $\hat{r}=b-A \hat{x}$ is perpendicular to the column of $A=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
(c) Solve $A x=b$ by least squares when $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], b=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Verify that the residual $\hat{r}=b-A \hat{x}$ is perpendicular to the columns of A .
3. Geometry of matrix multiplication as a linear transformation.
(a) Project the vector $b=(1,2,8)$ onto the columns of $A=\left[\begin{array}{cc}1 & 1 \\ 0 & 1 \\ 1 & -1\end{array}\right]$. Check that $\hat{r}=b-P b$ is perpendicular to the columns of A.
(b) Find the projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ when $A=\left[\begin{array}{cc}1 & 1 \\ 0 & 1 \\ 1 & -1\end{array}\right]$.
(c) Redo the first question on this page using the projection matrix P .
4. (a) Find the least squares solution to $\mathrm{Ax}=\mathrm{b}$ when $A=\left[\begin{array}{cc}6 & 9 \\ 3 & 8 \\ 2 & 10\end{array}\right], b=\left[\begin{array}{c}0 \\ 49 \\ 0\end{array}\right]$. Then determine the $2-$ norm of the residual.
(b) Fit a linear function of the form $f(t)=b+m t$ to the data points $(0,3),(1,3)$, and $(1,6)$.
5. Use Householder reflectors to find the QR factorization of the following matrices.
(a) $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{cc}1 & -4 \\ 2 & 3 \\ 2 & 2\end{array}\right]$
6. (a) Find the orthogonal projection of $(9,0,0,0)$ onto the subspace in 4 dimensional space spanned by $(2,2,1,0)$ and $(-2,2,0,1)$. ANSWER: $(8,0,2,-2)$.
(b) Verify that the matrix $C=\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$ is orthogonal.
(c) Write Python code to perform the Gram-Schmidt algorithm on the three columns a_{1}, a_{2}, and a_{3} of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right]$
7. Find the Householder reflectors to find the QR factorization of $A=\left[\begin{array}{cc}1 & -4 \\ 2 & 3 \\ 2 & 2\end{array}\right]$. ANSWER: $H_{1}=$ $\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right], H_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -.6 & -.8 \\ 0 & -.8 & .6\end{array}\right]$, and $Q R=\frac{1}{3}\left[\begin{array}{ccc}1 & -\frac{14}{5} & -\frac{2}{5} \\ 2 & 1 & -2 \\ 2 & 2 & 11\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 0 & 5 \\ 0 & 0\end{array}\right]$.
8. Textbook Exercises: 1, 2, 5, 7 .
