9.1: Newton's Method for nonlinear systems

- $f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}+1$ and $f_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$.
- Simultaneously solve: $f_{1}\left(x_{1}, x_{2}\right)=0$ and $f_{2}\left(x_{1}, x_{2}\right)=0$.
- This is a baby example found on p. 252 of which we already know the exact solutions $x^{*}=(1,0)$ and $x^{*}=(0,1)$. The purpose of this lesson is to find a robust algorithm to approximate these roots. We want an algorithm to approximate the roots of any nonlinear multivariable equation $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

9.1: Newton's Method for nonlinear systems

- x_{0} is the initial guess (x_{0} is a vector).
- $x_{k+1}=x_{k}-J\left(x_{k}\right)^{-1} F\left(x_{k}\right)$.

9.1: Newton's Method for nonlinear systems

- x_{0} is the initial guess (x_{0} is a vector).
- $J\left(x_{k}\right) p_{k}=-F\left(x_{k}\right)$.
- $x_{k+1}=x_{k}+p_{k}$.

9.1 Example: Newton's Method for nonlinear systems

Solve the nonlinear system $0=f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}+1$ and $0=f_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$.

- Verify that $0=f_{1}\left(x_{1}, x_{2}\right)$ is a parabola and $0=f_{2}\left(x_{1}, x_{2}\right)$ is a circle.
- Verify that $x^{*}=(1,0)^{T}$ and $x^{*}=(0,1)^{T}$ are only solutions.
- Use Newton's method to find \vec{x}_{1} and \vec{x}_{2} by hand when $\vec{x}_{0}=(1,1)^{T}$.

9.1 Example: Newton's Method Code for nonlinear systems

```
#ALGORITHM: Newton's Method for Systems p. }25
import numpy as np
def Newton_method(F, DF, x, num_steps):
    """Applies Newton's Method FPI num_steps times
    to F with initial guess x0."""
    for k in range(num_steps):
        x = x - np.linalg.solve(DF(x),F(x)) # use numpy's
        print(k+1,x)
```


9.1 Example: Newton's Method Code for nonlinear systems

\# Input to Newton's method:
\# A function $\mathrm{F}(\mathrm{x})$; its Jacobian DF and
\# an initial guess $\mathrm{x}=\mathrm{x} 0$.
def $F(x)$:
"""F is the multivariable function to study."""
return np.array([x[0]**2 -2*x[0] - x[1] + 1, x[0]**2 +
def $J(x)$:
"""J is the Jacobian of F.""" return np.array ([[2*x[0] - 2, -1], [2*x[0], 2*x[1]]])
x = np.array([1,1]) \# initial guess
Newton_method (F, J, x , 7)

9.1: Newton's Method for nonlinear systems

- The multivariable Newton's code method itself is on the first slide. It is short and sweet, a one-line FPI just like Newton's method for nonlinear scalar equations in Chapter 3.
- The second slide indicates the particular nonlinear equation for Newton's method to approximate a solution. You can edit the second slide for different problems.

