
Chapter 8: Eigenvalues and Singular Values

In this chapter we consider algorithms for solving two problems.

I The eigenvalue problem: A~x = λ~x .

I The singular value decomposition: A = UΣV T .



Chapter 8: Eigenvalues and Singular Values

In this chapter we consider algorithms for solving two problems.

I The eigenvalue problem: A~x = λ~x .

I The singular value decomposition: A = UΣV T .



Chapter 8: Eigenvalues and Singular Values

In this chapter we consider algorithms for solving two problems.

I The eigenvalue problem: A~x = λ~x .

I The singular value decomposition: A = UΣV T .



Chapter 8: Eigenvalues and Singular Values

Example (eigenvalue problem): Find the eigenvalues, eigenvectors

and diagonalizing matrix S, for A

[
7 2
−15 −4

]
.



Chapter 8: Eigenvalues and Singular Values

Example (eigenvalue problem for symmetric, positive definite
matrices): Find the eigenvalues, eigenvectors and diagonalizing

matrix Q, for A

[
3 1
1 3

]
.



Chapter 8: Eigenvalues and Singular Values

Example (eigenvalue problem for symmetric, positive definite
matrices): Find the eigenvalues, eigenvectors and diagonalizing

matrix Q, for A

 1 −1 0
−1 2 −1
0 −1 1

 .



Chapter 8: Eigenvalues and Singular Values

An important matrix factorization is the famous SVD,
A = UΣV T . It joins our other important factorizations: PA = LU
(Guassian Elimination), A = QR (Gram-Schmidt), A = SΛS−1,
and, when A is symmetric A = QΛQT .



Chapter 8: Eigenvalues and Singular Values

I A = UΣV T = (orthogonal)(diagonal)(orthogonal) can be
written as AV = UΣ.

I The r singular values on the diagonal

Σ =

σ1 . . .

σr


when σ1 ≥ σ2 ≥ . . . σr ≥ 0 are the square roots of the
eigenvalues of both ATA and AAT .

I The columns of the m ×m matrix U are eigenvectors of AAT .

I The columns of the n × n matrix V are eigenvectors of ATA.



Chapter 8: Eigenvalues and Singular Values

I A = UΣV T = (orthogonal)(diagonal)(orthogonal) can be
written as AV = UΣ.

I The r singular values on the diagonal

Σ =

σ1 . . .

σr


when σ1 ≥ σ2 ≥ . . . σr ≥ 0 are the square roots of the
eigenvalues of both ATA and AAT .

I The columns of the m ×m matrix U are eigenvectors of AAT .

I The columns of the n × n matrix V are eigenvectors of ATA.



Chapter 8: Eigenvalues and Singular Values

I A = UΣV T = (orthogonal)(diagonal)(orthogonal) can be
written as AV = UΣ.

I The r singular values on the diagonal

Σ =

σ1 . . .

σr


when σ1 ≥ σ2 ≥ . . . σr ≥ 0 are the square roots of the
eigenvalues of both ATA and AAT .

I The columns of the m ×m matrix U are eigenvectors of AAT .

I The columns of the n × n matrix V are eigenvectors of ATA.



Chapter 8: Eigenvalues and Singular Values

I A = UΣV T = (orthogonal)(diagonal)(orthogonal) can be
written as AV = UΣ.

I The r singular values on the diagonal

Σ =

σ1 . . .

σr


when σ1 ≥ σ2 ≥ . . . σr ≥ 0 are the square roots of the
eigenvalues of both ATA and AAT .

I The columns of the m ×m matrix U are eigenvectors of AAT .

I The columns of the n × n matrix V are eigenvectors of ATA.



Chapter 8: Eigenvalues and Singular Values

I A = UΣV T = (orthogonal)(diagonal)(orthogonal) can be
written as AV = UΣ.

I The r singular values on the diagonal

Σ =

σ1 . . .

σr


when σ1 ≥ σ2 ≥ . . . σr ≥ 0 are the square roots of the
eigenvalues of both ATA and AAT .

I The columns of the m ×m matrix U are eigenvectors of AAT .

I The columns of the n × n matrix V are eigenvectors of ATA.



Chapter 8: Eigenvalues and Singular Values

The SVD chooses the bases U and V in a special way. They are
more than just orthonormal. When A multiplies a column vi of V,
it produces σj times a column of U. That comes directly from
AV = UΣ, looked at a column at a time.



Chapter 8: Eigenvalues and Singular Values

Eigenvalues and singular values generally cannot be computed
precisely in a finite number of steps, even in the absence of floating
point error. All algorithms for computing eigenvalues and singular
values are therefore necessarily iterative, unlike the algorithms
introduced in chapters 5 and 6.



Chapter 8: Eigenvalues and Singular Values

Methods for finding eigenvalues can be split into two categories.

I Algorithms using decompositions involving similarity
transformations for finding several or all eigenvalues.

I Algorithms based on matrix-vector products to find just a few
of the eigenvalues.

I You will only be tested on second category of methods, the
methods related to the power method described below.



Chapter 8: Eigenvalues and Singular Values

Methods for finding eigenvalues can be split into two categories.

I Algorithms using decompositions involving similarity
transformations for finding several or all eigenvalues.

I Algorithms based on matrix-vector products to find just a few
of the eigenvalues.

I You will only be tested on second category of methods, the
methods related to the power method described below.



Chapter 8: Eigenvalues and Singular Values

Methods for finding eigenvalues can be split into two categories.

I Algorithms using decompositions involving similarity
transformations for finding several or all eigenvalues.

I Algorithms based on matrix-vector products to find just a few
of the eigenvalues.

I You will only be tested on second category of methods, the
methods related to the power method described below.



Chapter 8: Eigenvalues and Singular Values

Methods for finding eigenvalues can be split into two categories.

I Algorithms using decompositions involving similarity
transformations for finding several or all eigenvalues.

I Algorithms based on matrix-vector products to find just a few
of the eigenvalues.

I You will only be tested on second category of methods, the
methods related to the power method described below.



8.1 The power method and variants

The power method is based on repeated multiplication of the n× n
square matrix A on a random vector ~x0 (almost any initial vector
~x0 will do).

~x0 = c1~v1 + c1~v1 + . . .+ c1~v1

when (v1, v2, . . . , vn) is a basis of Rn of eigenvectors of A.



8.1 The power method and variants

The power method is based on repeated multiplication of the n× n
square matrix A on a random vector ~x0 (almost any initial vector
~x0 will do). The resulting FPI

~xk+1 = g(~xk) = A~xk

gravitates towards the direction of the dominant eigenvector.



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Given a network linkage graph with n nodes (page content is
overlooked in this view).

I Importance or rank of ith page is xi .

I Nj is the number of pages pointing to page j with rank xj .



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Given a network linkage graph with n nodes (page content is
overlooked in this view).

I Importance or rank of ith page is xi .

I Nj is the number of pages pointing to page j with rank xj .



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Given a network linkage graph with n nodes (page content is
overlooked in this view).

I Importance or rank of ith page is xi .

I Nj is the number of pages pointing to page j with rank xj .



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Given a network linkage graph with n nodes (page content is
overlooked in this view).

I Importance or rank of ith page is xi .

I Nj is the number of pages pointing to page j with rank xj .



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Looking carefully at this sum gives x = Ax , an eigenvalue
λ = 1 problem.

I The entries aij of A are the elements 1
Nj

associated with page

i .

I Since the number of links in and out of a given page is tiny
compared with the total number of webpages, A is extremely
sparse.



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Looking carefully at this sum gives x = Ax , an eigenvalue
λ = 1 problem.

I The entries aij of A are the elements 1
Nj

associated with page

i .

I Since the number of links in and out of a given page is tiny
compared with the total number of webpages, A is extremely
sparse.



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Looking carefully at this sum gives x = Ax , an eigenvalue
λ = 1 problem.

I The entries aij of A are the elements 1
Nj

associated with page

i .

I Since the number of links in and out of a given page is tiny
compared with the total number of webpages, A is extremely
sparse.



8.1 Example of the dominant eigenvector: Google’s
PageRank

xi =
∑
j∈Bi

xj

for i = 1, . . . , n.

I Looking carefully at this sum gives x = Ax , an eigenvalue
λ = 1 problem.

I The entries aij of A are the elements 1
Nj

associated with page

i .

I Since the number of links in and out of a given page is tiny
compared with the total number of webpages, A is extremely
sparse.



8.1 Example of the dominant eigenvector: Google’s
PageRank

I Example: mini-web with three sites.

I Transition matrix A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 .
I Eigenvalues: λ1 = 1, λ2 = 0.5, λ3 = 0.2.

I Corresponding eigenvectors:

v1 =

7
5
8

 , v2 =

−1
0
1

 , v3 =

−1
−3
4





8.1 Example of the dominant eigenvector: Google’s
PageRank

I Example: mini-web with three sites.

I Transition matrix A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 .
I Eigenvalues: λ1 = 1, λ2 = 0.5, λ3 = 0.2.

I Corresponding eigenvectors:

v1 =

7
5
8

 , v2 =

−1
0
1

 , v3 =

−1
−3
4





8.1 Example of the dominant eigenvector: Google’s
PageRank

I Example: mini-web with three sites.

I Transition matrix A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 .

I Eigenvalues: λ1 = 1, λ2 = 0.5, λ3 = 0.2.

I Corresponding eigenvectors:

v1 =

7
5
8

 , v2 =

−1
0
1

 , v3 =

−1
−3
4





8.1 Example of the dominant eigenvector: Google’s
PageRank

I Example: mini-web with three sites.

I Transition matrix A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 .
I Eigenvalues: λ1 = 1, λ2 = 0.5, λ3 = 0.2.

I Corresponding eigenvectors:

v1 =

7
5
8

 , v2 =

−1
0
1

 , v3 =

−1
−3
4





8.1 Example of the dominant eigenvector: Google’s
PageRank

I Example: mini-web with three sites.

I Transition matrix A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 .
I Eigenvalues: λ1 = 1, λ2 = 0.5, λ3 = 0.2.

I Corresponding eigenvectors:

v1 =

7
5
8

 , v2 =

−1
0
1

 , v3 =

−1
−3
4





8.1 Example of the dominant eigenvector: Google’s
PageRank

I Write the intial distribution vector x0

1
3
1
3
1
3

 in terms of the

eigenbasis.

I x0 = c1v1 + c2v2 + c3v3 to find c1 = 1
20 , c2 = −2

45 , c3 = −1
36 .

I Now iterate (FPI): xk = Akx0 =
∑3

1 ciλ
k
i vi .

I limk→∞ xk = c1v1 = 1
20

7
5
8

 =

35%
25%
40%

 .



8.1 Example of the dominant eigenvector: Google’s
PageRank

I Write the intial distribution vector x0

1
3
1
3
1
3

 in terms of the

eigenbasis.

I x0 = c1v1 + c2v2 + c3v3 to find c1 = 1
20 , c2 = −2

45 , c3 = −1
36 .

I Now iterate (FPI): xk = Akx0 =
∑3

1 ciλ
k
i vi .

I limk→∞ xk = c1v1 = 1
20

7
5
8

 =

35%
25%
40%

 .



8.1 Example of the dominant eigenvector: Google’s
PageRank

I Write the intial distribution vector x0

1
3
1
3
1
3

 in terms of the

eigenbasis.

I x0 = c1v1 + c2v2 + c3v3 to find c1 = 1
20 , c2 = −2

45 , c3 = −1
36 .

I Now iterate (FPI): xk = Akx0 =
∑3

1 ciλ
k
i vi .

I limk→∞ xk = c1v1 = 1
20

7
5
8

 =

35%
25%
40%

 .



8.1 Example of the dominant eigenvector: Google’s
PageRank

I Write the intial distribution vector x0

1
3
1
3
1
3

 in terms of the

eigenbasis.

I x0 = c1v1 + c2v2 + c3v3 to find c1 = 1
20 , c2 = −2

45 , c3 = −1
36 .

I Now iterate (FPI): xk = Akx0 =
∑3

1 ciλ
k
i vi .

I limk→∞ xk = c1v1 = 1
20

7
5
8

 =

35%
25%
40%

 .



8.1 Example of the dominant eigenvector: Google’s
PageRank

I Write the intial distribution vector x0

1
3
1
3
1
3

 in terms of the

eigenbasis.

I x0 = c1v1 + c2v2 + c3v3 to find c1 = 1
20 , c2 = −2

45 , c3 = −1
36 .

I Now iterate (FPI): xk = Akx0 =
∑3

1 ciλ
k
i vi .

I limk→∞ xk = c1v1 = 1
20

7
5
8

 =

35%
25%
40%

 .



8.1 The power method and variants

The power method is based on repeated multiplication of the n× n
square matrix A on a random vector ~x0 (almost any initial vector
~x0 will do). The resulting FPI

~xk+1 = g(~xk) = A~xk

gravitates towards the direction of the dominant eigenvector.



8.1 The power method and variants

The power method:

#ALGORITHM: Power Method p. 222.

import numpy as np

# matrix A. Looking for dominant eigenvector v so that Av = (lambda)v

A = np.array([[7,4],

[3,6]])

v = np.array([1,1]) # initial guess for dominant eigenvector

for k in range(20):

v = A@v

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

print(k+1, v, lam)



8.1 The power method and variants

In order to understand the power method focus on the code

portion when v0 =

[
1
0

]
:

for k in range(20):

v = A@v

I You should compute by hand v1 =

[
11
9

]
and v2 =

[
113
87

]
.

I Then use a computer to generate more iterations noting that
87
113 = .77 ≈ .75.



8.1 The power method and variants

In order to understand the power method focus on the code

portion when v0 =

[
1
0

]
:

for k in range(20):

v = A@v

I You should compute by hand v1 =

[
11
9

]
and v2 =

[
113
87

]
.

I Then use a computer to generate more iterations noting that
87
113 = .77 ≈ .75.



8.1 The power method and variants

In order to understand the power method focus on the code

portion when v0 =

[
1
0

]
:

for k in range(20):

v = A@v

I You should compute by hand v1 =

[
11
9

]
and v2 =

[
113
87

]
.

I Then use a computer to generate more iterations noting that
87
113 = .77 ≈ .75.



8.1 The power method and variants

Assume that the n × n matrix A has n linearly independent
eigenvectors then the power method works since for any initial
guess v0

I we can write v0 as a linear combination of the eigenvectors
v0 =

∑n
j=1 βjxj .

I Then repeated multiplication by A is easily computed as
Akv0 =

∑n
j=1 βjλ

k
j xj and the dominant eigenvalue will

dominate the sum as k →∞.
I The code

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

is introduced so that we do have our computers store massive
numbers and risk roundoff errors.



8.1 The power method and variants

Assume that the n × n matrix A has n linearly independent
eigenvectors then the power method works since for any initial
guess v0

I we can write v0 as a linear combination of the eigenvectors
v0 =

∑n
j=1 βjxj .

I Then repeated multiplication by A is easily computed as
Akv0 =

∑n
j=1 βjλ

k
j xj and the dominant eigenvalue will

dominate the sum as k →∞.
I The code

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

is introduced so that we do have our computers store massive
numbers and risk roundoff errors.



8.1 The power method and variants

Assume that the n × n matrix A has n linearly independent
eigenvectors then the power method works since for any initial
guess v0

I we can write v0 as a linear combination of the eigenvectors
v0 =

∑n
j=1 βjxj .

I Then repeated multiplication by A is easily computed as
Akv0 =

∑n
j=1 βjλ

k
j xj and the dominant eigenvalue will

dominate the sum as k →∞.

I The code

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

is introduced so that we do have our computers store massive
numbers and risk roundoff errors.



8.1 The power method and variants

Assume that the n × n matrix A has n linearly independent
eigenvectors then the power method works since for any initial
guess v0

I we can write v0 as a linear combination of the eigenvectors
v0 =

∑n
j=1 βjxj .

I Then repeated multiplication by A is easily computed as
Akv0 =

∑n
j=1 βjλ

k
j xj and the dominant eigenvalue will

dominate the sum as k →∞.
I The code

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

is introduced so that we do have our computers store massive
numbers and risk roundoff errors.



8.1 The power method and variants

The inverse power method is a clever twist on the power method:

#ALGORITHM: Inverse Iteration p. 228 when alpha = 0 to find smallest.

import numpy as np

# matrix A. Looking for minimum eigenvector v so that Av = (lambda)v

A = np.array([[7,4],

[3,6]])

v = np.array([1,1]) # initial guess for dominant eigenvector

for k in range(20):

v = np.linalg.solve(A,v)

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

print(k+1, v, lam)



8.1 The power method and variants
For an eigenvalue that is not greatest or lowest but you have a
good approximation.

#ALGORITHM: Inverse Iteration p. 228 for approximate alpha.

import numpy as np

# matrix A. Looking for dominant eigenvector v so that Av = (lambda)v

A = np.array([[0.7, 0.1, 0.2],

[0.2, 0.4, 0.2],

[0.1, 0.5, 0.6])

v = np.array([1,0,0]) # initial guess for dominant eigenvector

alpha = 0.44 # eigenvalue approximate

for k in range(20):

v = np.linalg.solve(A - alpha*eye(3),v)

v = v / np.linalg.norm(v)

lam = np.dot(v,A@v)

print(k+1, v, lam)



8.1 The power method and variants

Here is the way to use professional code to find the eigenvectors
and eigenvalues in numpy of a square matrix:

I >>> a = np.array([[4, 2, 0], [9, 3, 7], [1, 2, 1]], float)

I vals, vecs = np.linalg.eig(a)



8.1 The power method and variants

Here is the way to use professional code to find the eigenvectors
and eigenvalues in numpy of a square matrix:

I >>> a = np.array([[4, 2, 0], [9, 3, 7], [1, 2, 1]], float)

I vals, vecs = np.linalg.eig(a)



8.1 The power method and variants

Here is the way to use professional code to find the eigenvectors
and eigenvalues in numpy of a square matrix:

I >>> a = np.array([[4, 2, 0], [9, 3, 7], [1, 2, 1]], float)

I vals, vecs = np.linalg.eig(a)



8.1 The power method and variants

You may want to watch Gilbert Strang’s linear algebra videos 21
and 22 for a good review of eigenvectors, eigenvalues and the
decomposition A = SΛS−1. There are links to these videos on our
course page.



8.2 SVD

The QR factorization shows that we can always decompose a
matrix A into a matrix Q whose columns are orthogonal and an
upper triangular matrix R. The SVD factorization is similar. We
factorize A into two orthogonal matrices U and V T and a diagonal
matrix Σ. In total

A = UΣV T .



8.2 SVD

Follow these steps for the SVD factorization.

I Find the eigenvalues λi and unit eigenvectors vi of ATA.

I Let the columns of the matrix V be these unit eigenvectors vi .

I Let u1 = Av1
‖Av1‖ , u2 = Av2

‖Av2‖ , . . . un = Avn
‖Avn‖ be the columns of

the matrix U.

I Lastly let the diagonal matrix have diagonal elements the
singular values σ1 =

√
λ1, σ2 =

√
λ2, . . . , σm =

√
λm.



8.2 SVD

Follow these steps for the SVD factorization.

I Find the eigenvalues λi and unit eigenvectors vi of ATA.

I Let the columns of the matrix V be these unit eigenvectors vi .

I Let u1 = Av1
‖Av1‖ , u2 = Av2

‖Av2‖ , . . . un = Avn
‖Avn‖ be the columns of

the matrix U.

I Lastly let the diagonal matrix have diagonal elements the
singular values σ1 =

√
λ1, σ2 =

√
λ2, . . . , σm =

√
λm.



8.2 SVD

Follow these steps for the SVD factorization.

I Find the eigenvalues λi and unit eigenvectors vi of ATA.

I Let the columns of the matrix V be these unit eigenvectors vi .

I Let u1 = Av1
‖Av1‖ , u2 = Av2

‖Av2‖ , . . . un = Avn
‖Avn‖ be the columns of

the matrix U.

I Lastly let the diagonal matrix have diagonal elements the
singular values σ1 =

√
λ1, σ2 =

√
λ2, . . . , σm =

√
λm.



8.2 SVD

Follow these steps for the SVD factorization.

I Find the eigenvalues λi and unit eigenvectors vi of ATA.

I Let the columns of the matrix V be these unit eigenvectors vi .

I Let u1 = Av1
‖Av1‖ , u2 = Av2

‖Av2‖ , . . . un = Avn
‖Avn‖ be the columns of

the matrix U.

I Lastly let the diagonal matrix have diagonal elements the
singular values σ1 =

√
λ1, σ2 =

√
λ2, . . . , σm =

√
λm.



8.2 SVD

Follow these steps for the SVD factorization.

I Find the eigenvalues λi and unit eigenvectors vi of ATA.

I Let the columns of the matrix V be these unit eigenvectors vi .

I Let u1 = Av1
‖Av1‖ , u2 = Av2

‖Av2‖ , . . . un = Avn
‖Avn‖ be the columns of

the matrix U.

I Lastly let the diagonal matrix have diagonal elements the
singular values σ1 =

√
λ1, σ2 =

√
λ2, . . . , σm =

√
λm.



8.2 SVD EXAMPLE

I A =

[
6 2
−7 6

]
.

I ATA =

[
85 −30
−30 40

]
.

I characteristic polynomial of ATA is
λ2 − 125λ+ 2500 = (λ− 100)(λ− 25)

I Corresponding eigenvectors: v1 = 1√
5

[
2
−1

]
, v2 = 1√

5

[
1
2

]
.



8.2 SVD EXAMPLE

I A =

[
6 2
−7 6

]
.

I ATA =

[
85 −30
−30 40

]
.

I characteristic polynomial of ATA is
λ2 − 125λ+ 2500 = (λ− 100)(λ− 25)

I Corresponding eigenvectors: v1 = 1√
5

[
2
−1

]
, v2 = 1√

5

[
1
2

]
.



8.2 SVD EXAMPLE

I A =

[
6 2
−7 6

]
.

I ATA =

[
85 −30
−30 40

]
.

I characteristic polynomial of ATA is
λ2 − 125λ+ 2500 = (λ− 100)(λ− 25)

I Corresponding eigenvectors: v1 = 1√
5

[
2
−1

]
, v2 = 1√

5

[
1
2

]
.



8.2 SVD EXAMPLE

I A =

[
6 2
−7 6

]
.

I ATA =

[
85 −30
−30 40

]
.

I characteristic polynomial of ATA is
λ2 − 125λ+ 2500 = (λ− 100)(λ− 25)

I Corresponding eigenvectors: v1 = 1√
5

[
2
−1

]
, v2 = 1√

5

[
1
2

]
.



8.2 SVD EXAMPLE

I A =

[
6 2
−7 6

]
.

I ATA =

[
85 −30
−30 40

]
.

I characteristic polynomial of ATA is
λ2 − 125λ+ 2500 = (λ− 100)(λ− 25)

I Corresponding eigenvectors: v1 = 1√
5

[
2
−1

]
, v2 = 1√

5

[
1
2

]
.



8.2 SVD

I σ1 = 10, σ2 = 5 so Σ =

[
10 0
0 5

]
.

I Av1 = σ1u1 = 10 (1,−2)√
5

and Av2 = σ2u2 = 5 (2,1)√
5
. So

U = 1√
5

[
1 2
−2 1

]
.

I ‖A‖2 = σ1.

I κ(A) = σ1
σr
.



8.2 SVD

I σ1 = 10, σ2 = 5 so Σ =

[
10 0
0 5

]
.

I Av1 = σ1u1 = 10 (1,−2)√
5

and Av2 = σ2u2 = 5 (2,1)√
5
. So

U = 1√
5

[
1 2
−2 1

]
.

I ‖A‖2 = σ1.

I κ(A) = σ1
σr
.



8.2 SVD

I σ1 = 10, σ2 = 5 so Σ =

[
10 0
0 5

]
.

I Av1 = σ1u1 = 10 (1,−2)√
5

and Av2 = σ2u2 = 5 (2,1)√
5
. So

U = 1√
5

[
1 2
−2 1

]
.

I ‖A‖2 = σ1.

I κ(A) = σ1
σr
.



8.2 SVD

I σ1 = 10, σ2 = 5 so Σ =

[
10 0
0 5

]
.

I Av1 = σ1u1 = 10 (1,−2)√
5

and Av2 = σ2u2 = 5 (2,1)√
5
. So

U = 1√
5

[
1 2
−2 1

]
.

I ‖A‖2 = σ1.

I κ(A) = σ1
σr
.



8.2 SVD

I σ1 = 10, σ2 = 5 so Σ =

[
10 0
0 5

]
.

I Av1 = σ1u1 = 10 (1,−2)√
5

and Av2 = σ2u2 = 5 (2,1)√
5
. So

U = 1√
5

[
1 2
−2 1

]
.

I ‖A‖2 = σ1.

I κ(A) = σ1
σr
.



8.2 SVD

I Suppose a satellite transmits a picture containing 1000× 1000
pixels. If the color of each pixel is digitized this information
can be represented in a 1000× 1000 matrix A. How can one
transmit the important information contained in the picture
without sending all 1000000 numbers?

I Use the SVD:

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

I Watch Gilbert Strang’s video 29 from MIT’s linear algebra
course to learn more about the SVD. There is a link to
Strang’s videos on our coursepage.



8.2 SVD

I Suppose a satellite transmits a picture containing 1000× 1000
pixels. If the color of each pixel is digitized this information
can be represented in a 1000× 1000 matrix A. How can one
transmit the important information contained in the picture
without sending all 1000000 numbers?

I Use the SVD:

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

I Watch Gilbert Strang’s video 29 from MIT’s linear algebra
course to learn more about the SVD. There is a link to
Strang’s videos on our coursepage.



8.2 SVD

I Suppose a satellite transmits a picture containing 1000× 1000
pixels. If the color of each pixel is digitized this information
can be represented in a 1000× 1000 matrix A. How can one
transmit the important information contained in the picture
without sending all 1000000 numbers?

I Use the SVD:

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

I Watch Gilbert Strang’s video 29 from MIT’s linear algebra
course to learn more about the SVD. There is a link to
Strang’s videos on our coursepage.



8.2 SVD

I Suppose a satellite transmits a picture containing 1000× 1000
pixels. If the color of each pixel is digitized this information
can be represented in a 1000× 1000 matrix A. How can one
transmit the important information contained in the picture
without sending all 1000000 numbers?

I Use the SVD:

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r .

I Watch Gilbert Strang’s video 29 from MIT’s linear algebra
course to learn more about the SVD. There is a link to
Strang’s videos on our coursepage.



8.3 Methods to Compute Eigenvalues and Singular Values

We will not cover this section. These algorithms are more
advanced and important. Needless to say, Python has some of
these algorithms in its numpy library.

I D,V = np.linalg.eig(A)

I U, S, V = np.linalg.svd(A)



8.3 Methods to Compute Eigenvalues and Singular Values

We will not cover this section. These algorithms are more
advanced and important. Needless to say, Python has some of
these algorithms in its numpy library.

I D,V = np.linalg.eig(A)

I U, S, V = np.linalg.svd(A)



8.3 Methods to Compute Eigenvalues and Singular Values

import numpy as np

# matrix A. Use numpy svd code to find the svd of matrix A from class

A = np.array([[0,1],

[1,1],

[1,0]])

U,S,V = np.linalg.svd(A)

print(U)

print(S)

print(V)


