
6 Linear Least Squares Problems

Instead of solving Ax = b we will solve

minx‖b − Ax‖2.

when A has full column rank.



6 Linear Least Squares Problems

Instances of least squares arise in machine learning, computer
vision, and computer graphics applications. It often arises in
applications where data fitting is required: We search for an
approximating function v(t, x) depending on a continuous variable
t that fits data pairs (ti , bi ).



6 Linear Least Squares Problems

In section 6.1 we formulate an n × n system of linear equations,
the normal equations, that yield the solution for the stated
minimization problem. Solving the normal equations is a fast and
straightforward approach. However, the resulting algorithm is not
as stable as it can be in general. Orthogonal transformations
provide a more stable way to proceed, and this is described in
section 6.2. Algorithms to carry out QR decomposition are
described in section 6.3.



6.1 Normal Equations

Geometry of dot product:

I ~a · ~b = aTb = ‖a‖‖b‖ cos θ.

I Find the length and angle between a = (1, 4, 0, 2) and
b = (2,−2, 1, 3).

I a is perpendicular to b if aTb = 0.

I least squares solution: residual orthogonal to column space,
0 = aT r̂ = aT (b − ax̂).



6.1 Normal Equations

Geometry of a projection as matrix multiplication (as a linear
transformation).

I Pb = a aTb
aT a

projection of b onto line spanned by a.

I Find the projection of b = (−2,−2,−2), b = (10,−5, 5), and
b = (1, 2, 3) onto the line spanned by a = (1, 1, 1).

I Find the projection matrix of the projection onto the line
spanned by a = (1, 1, 1).

I What multiple of a = (1, 1, 1) is closest to the point (2, 4, 4)?



6.1 Normal Equations

Use the Pythagorean theorem to verify the following are equivalent
when a and b are vectors in Rn and x is a scalar.

I x̂ = minx‖b − ax‖2.
I residual r = b − Ax̂ is perpendicular to a.

I The normal equation, aTax = aTb, is satisfied.

I ax = a aTb
aT a

= Pb.



6.1 Normal Equations

Show that the following are equivalent when A is an m × n matrix
with m > n and independent columns, and b is an m dimensional
vector.

I minx‖b − Ax‖2.
I residual r = b − Ax̂ is perpendicular to columns of A,

AT r = 0.

I The normal equation, ATAx = ATb, is satisfied.

I Ax = A(ATA)−1ATb.

I If you read section 6.1 in our textbook you will see a cool way
to prove this using multivariable calculus.



6.1 Normal Equations

Equations to know:

I Normal equations: ATAx̂ = ATb.

I Least Squares solution: x̂ = (ATA)−1ATb.

I Projection: Pb = A(ATA)−1ATb.

I Solve the normal equations to find the projection of
b = (4, 5, 6) onto the plane spanned by a1(1, 1, 0) and
a2(2, 3, 0).



6.1 Normal Equations

Geometry of matrix multiplication as a linear transformation.

I Project the vector b = (1, 2, 2) onto the line through
a = (1, 1, 1). Check that r̂ = b − Pb is perpendicular to a.

I Find the best least squares solution x̂ to 3x = 10, 4x = 5.
How is the residual minimized? Check that the residual

r̂ = b − Ax̂ is perpendicular to the column of A =

[
3
4

]
.

I Solve Ax = b by least squares when A =

1 0
0 1
1 1

 , b =

1
1
0

 .
Verify that the residual r̂ = b − Ax̂ is perpendicular to the
columns of A.



6.1 Algorithm: Least squares via Normal equations

I Form B = ATA and y = ATb.

I Compute Cholesky Factorization: B = GGT .

I Solve lower triangular system Gz = y for z .

I Solve lower triangular system GT x = z for x .



6.1 Algorithm: Least squares via Normal equations

Example: Ax = b when A =

1 1
1 −1
1 1

 , b =

2
1
3

 , x =

[
x1
x2

]
.

I B = ATA =

[
3 1
1 3

]
and y = ATb =

[
6
4

]
.

I B = LU.

I B = LU = LDŨ.

I B = GGT when G = LD
1
2 =

[√
3 0
1√
3

√
8
3

]
.



6.1 Algorithm: Least squares via Normal equations

Example: Find the least squares solution to Ax = b when

A =


1 0 1
2 3 5
5 3 −2
3 5 4
−1 6 3

 , b =


4
−2
5
−2
1

 , x =

x1x2
x3

 using Python in two

ways: 1. Using Cholesky factorization and forward and back
substitution, 2. Using numpy’s built-in lstsq algorithm.



SOLUTION using Cholesky

import numpy as np

from numpy import linalg as LA

# set up problem

A = np.array([[1,0,1],

[2,3,5],

[5,3,-2],

[3,5,4],

[-1,6,3]], float)

b = np.array([4,-2,5,-2,1])

# Cholesky factorize and forward and back sub.

B = A.T@A

G = LA.cholesky(B)

c = LA.solve(G,A.T@b)

x = LA.solve(G.T,c)

print(x)

# check that residual is perp. to columns

r = b - A@x

print(A.T@r)



SOLUTION using lstsq algorithm

import numpy as np

# set up

A = np.array([[1,0,1],

[2,3,5],

[5,3,-2],

[3,5,4],

[-1,6,3]], float)

b = np.array([4,-2,5,-2,1])

# solve using lstsq

x = np.linalg.lstsq(A,b,rcond=None)[0]

# check that residual is perp. to columns

r = b - A@x

print(A.T@r)



6.1 Application: Data fitting

I Example: Find the linear polynomial y = mx + b that best fits
the data points (0, 27), (1, 0), (2, 0), and (3, 0) using least
squares.

I Example: Find the quadratic polynomial y = ax2 + bx + c
that best fits the data points (0, 27), (1, 0), (2, 0), and (3, 0)
using least squares.



6.2 Orthogonal Transformations and QR

I The main drawback of the normal equations for solving least
squares problems is accuracy in the presence of large condition
numbers.

I Information may be lost when forming ATA when κ(A) is
large, since κ(ATA) ≈ κ(A)2.



6.2 Orthogonal Transformations and QR

A matrix Q is orthogonal if its columns are orthonormal or if
QTQ = I .

I Verify that Q =


1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3
−1√
2

1√
6

 is orthogonal.

I Verify that Q =


1√
3

1√
2

1√
3

0
1√
3
−1√
2

 is orthogonal. Find the least

squares solution to Qx̂ = b when b = (1, 0,−3).

I Verify that A =

[
1 2
2 1

]
is not orthogonal.



6.2 Orthogonal Transformations and QR

Here are the standard methods for solving the linear least squares
problem.

I Normal equations: fast, simple, intuitive, but less robust in
ill-conditioned situations.

I QR decomposition: this is the ”standard” way used in
general-purpose software. It is often more computationally
expensive than the normal equations approach but is more
robust.

I SVD method: used mostly when A is rand deficient or nearly
rank deficient (in which case the QR approach may not be
sufficiently robust). The SVD approach is very robust but is
significantly more expensive in general.



6.2 Orthogonal Transformations and QR

I Instead of solving the normal equations ATA = ATb, first
factor A = QR, when the columns of Q are orthnormal and R
is upper triangular.

I After QR factorizing Ax = QRx = b can be solved by a
matrix multiplication (QTQ)Rx = QTb followed by back
substitution on Rx = QTb.n

I In the text two methods are discussed to factor A = QR : the
Gram-Schmidt algorithm and the Householder reflectors
method.



6.2 Orthogonal Transformations and QR

# ALGORITHM: Example 6.5 p. 154

import numpy as np

A = np.array([[1, 0],

[1, 1],

[1, 2]],float)

b = np.array([[0.1],

[0.9],

[2.0]],float)

Q, R = np.linalg.qr(A) # use numpy’s qr program

x = np.linalg.solve(R, Q.T @ b) # use numpy’s solve program

print(x)



6.3 Householder and Gram-Schmidt

A particular robust QR factorization for the least squares problem
is through Householder reflectors. First, however, we describe the
Gram-Schmidt algorithm to factor A = QR when Q is orthogonal
and R is upper triangular. The Gram-Schmidt QR algorithm
conceptually important and easier to grasp than Householder.
Householder reflectors though more difficult to understand are used
more frequently in professional software.



6.3 Householder and Gram-Schmidt

I Gram-Schmidt Algorithm to factor a matrix A with full
column rank.

I Take one column vi of A at a time starting with the leftmost
first.

I Find v⊥i = vi − v
‖
i by subtracting the parallel part to the span

of all previous (to the left) columns.

I Then normalize ui =
v⊥
i
‖vi‖ .



6.3 Householder and Gram-Schmidt

The Gram-Schmidt formula, v⊥i = vi − v
‖
i , is easy to remember:

subtract from the old ith column vi all the projections from the
earlier (to the left) columns v1, v2, . . . , and vk−1, one at a time.

I v⊥i = vi − (vT1 vi )v1
I v⊥i = vi − (vT2 vi )v2, . . .

I v⊥i = vi − (vTk−1vi )vk−1



6.3 Householder and Gram-Schmidt

In Python, using assignment, we can do all this in a loop (please
try to write a loop to do Gram-Schmidt). HINT: do one
subtraction each loop.

I vi = vi − (vT1 vi )v1
I vi = vi − (vT2 vi )v2, . . .

I vi = vi − (vTk−1vi )vk−1



6.3 Householder and Gram-Schmidt

Here is how QR factorization works for a general 3× 3 matrix:

A =
[
~a1 ~a2 ~a3

]
=
[
~q1 ~q2 ~q3

] ~q1T ~a1 ~q1
T ~a2 ~q1

T ~a3
0 ~q2

T ~a2 ~q2
T ~a3

0 0 ~q3
T ~a3

 = QR.



6.3 Householder and Gram-Schmidt

Here is an example of how QR factorization works in a 3× 3
matrix:

A =

1 1 2
0 0 1
1 0 0

 =
1√
2

1 1 0

0 0
√

2
1 −1 0



√

2 1√
2

√
2

1√
2

√
2

1

 = QR.



6.3 Example: Gram-Schmidt Algorithm

Find the QR factorization of A =


1 1
1 9
1 9
1 1

 using Gram-Schmidt.

Use the QR factorization of A to solve Ax = b when b =


6
0
0
0

 .



6.3 Example: Gram-Schmidt Algorithm

Find the QR factorization of A =


1 1 0
1 9 2
1 9 2
1 1 2

 using Gram-Schmidt.

Use the QR factorization of A to solve Ax = b when b =


6
0
0
0

 .



6.3 Householder Reflectors

I Let v and w be vectors with ‖v‖ = ‖w‖ and let a = v − w .

Then H = I − 2P = I − 2 aaT

aT a
is symmetric orthogonal and

Hw = v .

I Find H when v = [5, 0] and w = [3, 4].

I H =

[
0.6 0.8
0.8 −0.6

]
I Use this Householder reflector to find the QR factorization of

A =

[
3 1
4 3

]
.


