
5 Linear Systems: Direct Methods

In this chapter we solve linear equations Ax = b when A is a real,
square, and nonsingular matrix and b is a vector. Such problems
arise frequently in all branches of science, engineering, economics,
and finance. There is no single technique that is best in all cases.
Most methods can be divided into two classes: iterative methods
and direct methods. In this chapter we study direct methods; in
the absence of roundoff error, such methods would yield the exact
solution in a finite number of steps. The basic direct method is
Gaussian elimination; the bulk of the algorithm involves only the
matrix A and amounts to its decomposition into a product A = LU.



5 Linear Systems: Direct Methods

I Solve Ax = b, when A is square and nonsingular.

I Gaussian Elimination (Chapter 5) is a direct method.

I The Jacobi method (Chapter 7) is an iterative method.



5 Linear Systems: Direct Methods

Solve the system

2x − 3y = 2

5x − 6y = 8

by

I augmenting and Gaussian Eliminating (as in your linear
algebra course) to the equivalent system.

I

2x − 3y = 2

3

2
y = 3



5 Linear Systems: Direct Methods

Solve the system

2x − 3y = 2

5x − 6y = 8

by

I factoring A as A=LU and then forward and back substituting.

I

[
2 −3
5 −6

]
=

[
1 0
5
2 1

] [
2 −3
0 3

2

]
.



5 Linear Systems: Direct Methods

Solve the system

2x1 + x2 = 0

x1 + 2x2 + x3 = −3

x2 + 2x3 = −2

by finding an LU decomposition and then forward substituion
followed by backward substitution.



5.1 Algorithm: Backward Substitution

Solve Ux = b for x when U is n × n by the backward substitution
algorithm.

for k in range: (n − 1,−1,−1) :

xk =
bk −

∑n
j=k+1 Ukjxj

Ukk
.

I Try to understand this algorithm one row k at a time.

I Implement
∑n

j=k+1 with a loop and assignment update.

I Use data structure Arrays for matrices from section 2.4 Comp.
Physics.



5.1 Algorithm: Backward Substitution in Python

for i in range(n-1,-1,-1):

x[i] = b[i]

for j in range (i+1,n):

x[i] -= U[i,j]*x[j]

x[i] = x[i]/U[i,i]

print(x)

I Can you see how this program implements the algorithm?

I Wait a day and try to rewrite the code without looking.



5.1 Algorithm: Backward substitution (Example)

import numpy as np

U = np.array([[3, 2, 1],

[0, 2 , -2],

[0, 0, 5]])

n = 3 # size of A is 3x3

b = np.array([2,6,-10]) # U and b from classwork

x = np.zeros(n) # empty vector x to hold answer

for i in range(n-1,-1,-1): # loop backwards from end

x[i] = b[i]

for j in range (i+1,n): # each column greater i

x[i] -= U[i,j]*x[j]

x[i] = x[i]/U[i,i]

print(x)



5.1 Cost of backward substitution

I 1+
∑n−1

k=1 1+((n−k)+(n−k)+1) =
∑n

k=1(2(n−k)+1) = n2.

I noting that B.S is O(n2) and not O(n3) is often helpful.
Memorize it.

I There is also forward substitution which shares order, O(n2).



5.1 Algorithm: Backward Substitution

Write code to solve Lc = b for c when L is n × n lower triangular
by the forward substitution algorithm.

I Try your code when L =

 1 0 0
−1 1 0
0 −1 1

 and b =

0
0
1

 .
I Check your code by solving by hand.



5.2 Algorithm: LU decompostion
Set up

# ALGORITHM: LU decomposition from p.103

import numpy as np

A = np.array([[1, 2, 1],

[3, 8 , 1],

[0, 4, 1]],float)

n = 3 # size of A is 3x3

L = np.identity(n)

for j in range(n-1): # loop each column j from 0 to (n-2)

for i in range(j+1,n): # loop rows

L[i,j] = (A[j+1,j]/A[j,j]) # multiplier = L[i,j]

A[i,:] = A[i,:] - L[i,j]*A[j,:] # subtract multiplier*row

print(A)

print(L)



5.2 Cost of LU decomposition

I 2
∑n−1

k=1 n
2 ≈ 2

3n
3 = O(n3).

I Comparing to the cost of back substitution we see that the
cost of the elimination phase dominates for all but very small
problems.



5.2 LU decomposition

Forming A−1 explicitly and multiplying by b is generally not
recommended. For one, it can be wasteful in storage. Moreover, it
is more computationally expensive than LU decomposition, though
by less than an order of magnitude. Also it may give rise to a more
pronounced presence of roundoff errors. Finally, it simply has no
advantage.



5.2 LU decomposition

It is also not recommended to solve Ax=b by computing
determinants, cofactors, or



5.3 Pivoting Strategies


x1 + x2 + x3 = 1

x1 + x2 + 2x3 = 2

x1 + 2x2 + 2x3 = 1



5.3 Pivoting Strategies


x1 + x2 + x3 = 1

x1 + 1.0001x2 + 2x3 = 2

x1 + 2x2 + 2x3 = 1

I Exact solution to 5 digits: x ≈ (1,−1.0001, 1.0001).

I G.E solution to 3 digits without row interchanges:
x ≈ (0, 0, 1).

I G.E solution to 3 digits with row interchanges:
x ≈ (1.000,−1.000, 1.000).



5.3 Pivoting Strategies: Example

Solve

3 1 2
6 3 4
3 1 5

x1x2
x3

 =

0
1
3

 by finding the PA = LU

factorization (with partial pivoting) and then carrying out forward
and backward substitution.

I P =

0 1 0
1 0 0
0 0 1

 , L =

 1 0 0
0.5 1 0
0.5 1 1

 ,U =

6 3 4
0 −.5 0
0 0 3

 .
I You will only be asked to do PA = LU factorization by hand

in this course.



5.3 Pivoting Strategies: Example

Elimination with partial pivoting to factor A into PA = LU is an
important algorithm. This is how a computer solves a general
linear equation Ax = b, more or less. This is a far different
approach than the theoretical approach x = A−1b you learned in
your linear algebra course.



5.4 Efficient Implementation

We will not cover this section. There will be no quiz or test
questions from this section. Computer science majors will find it to
be interesting reading.



5.5 Cholesky Factorization

I skip section 5.3.

I symmetric: AT = A.

I positive definite: all eigenvalues λi > 0.



5.5 Cholesky Factorization

I for a positive definite, symmetric matrix A do Cholesky
factorization.

I A = LU = LDŨ = LDLT

I and then A = GGT when G = LD
1
2 .



5.5 Cholesky Factorization

You will only need to be able to Cholesky factorize a 2× 2 matrix
on quizzes or exams by hand.

I Example: A =

[
5 4
4 5

]
.

I Solve

[
5 4
4 5

]
= GGT =

[
g11 0
g21 g22

] [
g11 g21
0 g22

]
for G.



5.6 Sparse Matrices

You need not read section 5.6. You will not be tested on it.
However do think about how you would alter our Gaussian
elimination, and back substitution code to solve the 100× 100
system Ax=b when

A =



3 −1 0 · · · · · · · · · · · · 0

−1 3 −1
. . .

...

0 −1 3 −1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . −1 3 −1 0
...

. . . −1 3 −1
0 · · · · · · · · · · · · 0 −1 3


, b =



2
1
1
...
...
...
1
2


.



5.6 Sparse Matrices

Continuation of previous slide. You can use the numpy commmand

from scipy.sparse import diags

A=diags([-1,3,-1],[-1,0,1],shape=(100,100)).toarray()

The exact solution is x = (1, 1, . . . , 1).



5.7 Permutation and ordering strategies

We will not cover this section this semester.



5.8 Errors and the condition number.

Suppose by some algorithm we have computed an approximate
solution x̂ to Ax = b. We are concerned with the following error
measurements.

I absolute error: ||x − x̂ ||.
I relative error: ||x−x̂ ||||x || .

I residual: r̂ = b − Ax̂ .

I The residual is an important measure of error because it is
easily computed, whereas the absolute and relative errors are
impossible to compute. We will therefore use the residual
often in analyzing our algorithms.



5.8 Errors and the condition number.

Solve Ax = b when A =

[
1.2969 .8648
.2161 .1441

]
and b =

[
.8642
.1440

]
.

I using some algorithm x̂ =

[
.9911
−.4870

]
.

I residual r̂ =

[
−10−8

10−8

]
. So ||r̂ ||∞ = 10−8 is small.

I However the exact solution is x =

[
2
−2

]
, so

||x − x̂ ||∞ = 1.513.



5.8 Condition number and relative error estimate

I r̂ = b − Ax̂ = Ax − Ax̂ = A(x − x̂).

I x − x̂ = A−1r̂ .

I This gives us an important bound on the absolute error:

‖e‖ = ‖x − x̂‖ ≤ ‖A−1‖‖r̂‖.

You should memorize it.



5.8 Condition number and relative error estimate

Since the relative error is more often used than the absolute error,
we compute the following bound using the previous slide together
with the fact that Ax = b is equivalent to x = A−1b.

I Combine ‖x − x̂‖ = ‖A−1‖‖r̂‖
I and ‖x‖ = ‖A−1b‖ ≤ ‖b‖‖A‖
I to get the important bound on the relative error:

‖x − x̂‖
‖x‖

≤ ‖A−1‖‖r̂‖‖A‖
‖b‖

.



5.8 Condition number and relative error estimate

The previous bound is important and comes with some new
vocabulary.

I Condition number of square matrix A is κ(A) = ||A||||A−1||.
I relative forward error: ||x−x̂ ||||x || .

I relative backward error: ||r̂ ||||b|| .

I KEY BOUND: ||x−x̂ ||||x || ≤ κ(A) ||r̂ ||||b|| .



5.8 Error and condition number

The equation
||x − x̂ ||
||x ||

≤ κ(A)
||r̂ ||
||b||

is extremely important in numerical linear algebra. You should
spend some time thinking about it. Essentially the product of the
condition number, κ(A), and the relative backward error bound the
relative forward error. Since we want the relative forward error to
be small, we often use this equation to bound the relative forward
error by approximating the right side.



5.8 Error and condition number

If the condition number, κ(A), is large the equation

||x − x̂ ||
||x ||

≤ κ(A)
||r̂ ||
||b||

does not provide a small bound on the relative forward error, even
when the relative backward error is tiny. We call such a problem
with large condition number ill-conditioned. The condition number
κ(A) measures the sensitivity of a problem: If A and b are slightly
changed how does the solution x = A−1b change? Is the change in
x great (ill-conditioned) or small (well-conditioned)?
In the course of each problem all involved decide what is
considered ”large” and what is considered ”tiny”.



5.8 Errors and the condition number.

Solve Ax = b when A =

[
1.2969 .8648
.2161 .1441

]
and b =

[
.8642
.1440

]
.

I A−1 = 108
[
.1441 −.8648
−.2161 1.2969

]
I condition number: κ(A) = 2.1617 · 1.513 · 108 ≈ 3.27× 108.



5.8 Error and condition number

I You should memorize κ2(Q) = 1 when Q is orthogonal.

I You should memorize κ2(A) = λ1
λn

when A is symmetric
positive definite.

I However in general, the norm and condition number are not
computed in practice, only estimated. There is not enough
time to solve the eigenvalue problem and get

κ2(A) =
√

λ1(ATA)
λn(ATA)

.



5.8 Error and condition number Python

Numpy provides an algorithm, cond, to approximate the condition
number of a matrix. We will not program this algorithm in this
class ourselves. Here is how to use it.

I from numpy import linalg as LA

I LA.cond(a) = κ2(a) and LA.cond(a, np.inf) = κ∞(a).

I Python can also compute norms of matrices ‖A‖2 =
LA.norm(a) and ‖A‖∞ = LA.norm(a, np.inf)


