Part I (70 points) Questions 1 to 8. Answer all questions

1) (12 points) Find the derivative $\frac{dy}{dx}$ for each of the following:

a) $y = \sqrt{\tan x} + \cos\left(\sqrt{x^2 + 1}\right)$

b) $y = \sin^2(x) \sec^2(x^4)$

c) $y = \frac{2x^4}{(3x^2 + 2)^3}$ Simplify so that your answer is a single reduced fraction.

Begin your work below. If you need more space, use the back of page 1.
2) (16 points) Find each integral:

a) \[\int x^2 + \sqrt{x} \, dx \]

b) \[\int \frac{8x}{\sqrt{x^2 - 170}} \, dx \]

c) \[\int_0^2 (x + \sqrt{x})^2 \, dx \]

d) \[\int_0^{\pi/4} \frac{1 + \cos^2 x}{\cos^2 x} \, dx \]

Begin your work below. If you need more space, use the back of page 2.

3) a) (4 points) Find \(\frac{dy}{dx} \) at point \((x, y)\) on the graph of the equation \(x^2 y^2 = x + 2y \).

b) (2 points) Use your answer to a) to find the equation of the tangent line to the graph of \(x^2 y^2 = x + 2y \) at point \((2, 1)\).

Begin your work below. If you need more space, use the back of page 3.

4) (3 points each) Find each of the following limits:

a) \[\lim_{x \to 2} \frac{x^2 - 5x + 6}{2 - x} \]

b) \[\lim_{x \to 0} \frac{3x}{\tan(2x)} \]

Begin your work below. If you need more space, use the back of page 4.

5) (6 points) The area of a square is increasing at the rate of 3 square feet per minute.

a) How fast is the length of the side of the square increasing at the moment when the area of the square is 16 square feet?

b) What is the area of the square at the moment that its side length is increasing at the rate of 2 feet per minute?

Begin your work below. If you need more space, use the back of page 5.

6) (6 points) Find the absolute maximum and minimum values of the function \(y = x^4 - 8x^2 \) for \(x \) in the interval \([-1, 1]\).

Begin your work below. If you need more space, use the back of page 6.

7) (8 points)

a) State the definition of the derivative \(f''(x) \) as a limit.

b) Use that definition to find \(f''(x) \) if \(f(x) = \frac{x}{x+1} \). No other method will be accepted.

Begin your work below. If you need more space, use the back of page 7.

8) (10 points) For the function \(f(x) = \frac{x^2 - 5}{x^2 - 9} \), you are given (do not compute!)

\[f'(x) = \frac{-8x}{(x^2 - 9)^2} \quad \text{and} \quad f''(x) = \frac{24(3 + x^2)}{(x^2 - 9)^3} \]

a) Find the coordinates of all intercepts, and the equations of all asymptotes, of the graph of \(y = f(x) \).

b) In what intervals is the function \(f \) increasing? decreasing?

c) In what intervals is the graph of \(f \) concave up? concave down?

d) Find the coordinates of all local maxima and local minima of the function \(f \).

e) Sketch the graph of \(y = f(x) \). Label all the features you found in parts a) and d).

Begin your work below. If you need more space, use the back of page 8.
Part II. Questions 9 to 13. Answer any 3 complete questions (ten points each).
Please look over all 5 problems in this part and then choose the 3 that you want to work on.
After you finish this part, go back to the chart on the front page of this booklet, and cross out the two problems that you wish to omit.

9. a) Use differentials (linear approximation) to find an approximation to \(\frac{1}{\sqrt{7.8}} \).
 Write your answer as a reduced fraction.

b) Use a definite integral to find the area below the graph of \(y = \sin(x) \), above the \(x \)-axis, and between the vertical lines \(x = \pi / 4 \) and \(x = \pi / 2 \).
Begin your work below. If you need more space, use the back of page 9.

10. a) Suppose the function \(y = f(x) \) satisfies \(f''(x) = 12x^2 + 2; f'(1) = 7; f(1) = 100 \).
Find \(f(2) \) by first finding the general formula for \(f(x) \).

b) Find each of the following limits:
 i) \(\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3} \)
 ii) \(\lim_{x \to \infty} \frac{\sqrt{x+1} - 2}{x-3} \)
Begin your work below. If you need more space, use the back of page 10.

11. a) Let \(F(x) = \int_{x=0}^{x} \frac{\sqrt{t}}{t^2+1} \, dt \) . Find \(F'(4) \).

b) Find the average value of the function \(f(x) = \sqrt{x} \) on the interval \([1,4]\).
Write your answer as a reduced fraction.
Begin your work below. If you need more space, use the back of page 11.

12. A cardboard box has a square base and an open top. The four sides are made of wood that costs 2 dollars per square foot, while the base is made of aluminum that costs 25 dollars per square foot. If the volume of the box is to be 50 cubic feet, what is its minimum possible cost?
Begin your work below. If you need more space, use the back of page 12.

13. a) Let \(f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 5 & \text{if } x = 2 \\ x + 2 & \text{if } x > 2 \end{cases} \)
 i) Find \(\lim_{x \to 2} f(x) \) or explain why that limit does not exist.
 ii) State the definition of continuity in terms of limits, and then use your definition to decide whether \(f \) is continuous at \(x = 2 \).

b) Use a Riemann Sum to estimate \(\int_{x=0}^{2} (1 + 4x^2) \, dx \) by using the Midpoint Rule with \(n = 4 \) equal subdivisions.
Begin your work below. If you need more space, use the back of page 13.

This is the end of the exam. You should have answered all question in Part I and three questions in Part II. In the chart on the front page of this booklet, cross out the two problems in Part II that you are leaving out.